Skip to main content

· One min read

2021了你还不知道数据标注?人工智能为什么需要数据标注

编写时间: 2021-2-22 来源:搜狐新闻

“得数据者,得人工智能”。如今人工智能早已在我们的生活中屡见不鲜,像“Siri”、“指纹解锁”、“人脸识别”等等都属于人工智能的范畴,然而人工智能的上游基础产业,数据标注却鲜为人知。数据标注是一个极为庞大的产业,在数标行业内部,从业者也必将随着AI行业而一同进入细分市场追逐阶段,可谓机遇与挑战并行,为创业者创造力大量的机会,为社会造就了大量新兴的就业机会。那么数据标注的应用场景都有哪些,它为什么如此火热呢?

数据标注的应用场景

人脸识别

图片

人脸识别系统

人脸识别也称人像识别、面部识别,是基于人的脸部特征信息进行多年龄段、多角度、多表情、多光线的人脸图像采集,从而完成身份识别的一种生物识别技术。人脸识别涉及的技术主要包括计算机视觉、图像处理等。

人脸识别(视觉识别技术的一种应用)在国内的应用大致经历从公共安全领域扩展到商业领域的过程。最初,机场、高铁站以及酒店等场景使用这项技术对个人身份进行验证,随后商业银行也开始采用人脸识别实现远程开户。再之后,刷脸支付、刷脸门禁也相继出现,人脸识别逐渐从少数有限场景渗透到人们的日常生活之中,目前,人脸识别技术已广泛应用于多个领域,如金融、司法、公安、边检、航天、电力、教育、医疗等。

随着人脸识别技术的进一步成熟和社会认同度的提高,其将应用在更多领域,给人们的生活带来更多改变。

智能交通

图片

近年来,随着人工智能浪潮的兴起,无人驾驶、智能交通安全系统一度走进我们的生活,国内许多公司纷纷投入到自动驾驶和无人驾驶的研究,例如百度启动的“百度无人驾驶汽车”计划,其自主研发的无人驾驶汽车Apollo还曾亮相2018年央视春晚。

再比如近日上海街头出现的地锁停车黑科技,当你停好车,协管员就会协管员将一张停车提示卡置于门把手上。停车7分钟后,停车位下的指示灯由绿转红,金属地锁升起,卡住车身底盘。取车时,用手机扫了扫地面上的二维码,停车时长、费用信息一目了然。支付停车费后,地面指示灯由红转绿,地锁降下,电子发票也能实时获取。

图片

智能停车位

而这些都要依赖于人工智能数据标注的介入,对于行车视频进行采集,路况进行提取,停车点进行标注,包括D点云障碍物、红绿灯、车道灯及高精地图。为行人识别、车辆识别、红绿灯识别、车道线识别等技术提供精确训练数据,为智能交通保驾护航。

智能语音

图片

智能语音即实现人与机器以语言为纽带的通信。人类大脑皮层每天处理的信息中,声音信息占20%,它是沟通最重要的纽带。人类对机器语音识别的探索始于20世纪50年代,迄今已逾70年。2016年,在深度神经网络的帮助下,机器语音识别准确率第一次达到人类水平,意味着智能语音技术落地期到来。

数据标注主要在语音方面的应用场景主要是语音语言采集,语音内容加工处理,情感判断,语音文字等转化。为语音识别(ASR)、语音合成(TTS)等提高质量语音数据让您的智能设备更懂得用户心声。我们常用到的小爱同学、天猫静音,手机语音输入,甚至包括有时候接到的营销电话都有着智能语音的身影。

图像处理之医学图像

图片

医学图像处理是目前人工智能在医疗领域的典型应用,它的处理对象是由各种不同成像机理,如在临床医学中广泛使用的核磁共振成像、超声成像等生成的医学影像。

传统的医学影像诊断,主要通过观察二维切片图去发现病变体,这往往需要依靠医生的经验来判断。而利用计算机图像处理技术,可以对医学影像进行图像分割、特征提取、定量分析和对比分析等工作,进而完成病灶识别与标注,针对肿瘤放疗环节的影像的靶区自动勾画,以及手术环节的三维影像重建。

该应用可以辅助医生对病变体及其他目标区域进行定性甚至定量分析,从而大大提高医疗诊断的准确性和可靠性。另外,医学图像处理在医疗教学、手术规划、手术仿真、各类医学研究、医学二维影像重建中也起到重要的辅助作用。

得数据者,得人工智能

人工智能主要算法应用领域集中在计算机视觉、语音识别/语音合成,以及自然语言处理三个方面。

1.图像方面:一个新研发的计算机视觉算法需要上万张到数十万张不等的标注图片训练,新功能的开发需要近万张图片训练,而定期优化算法也有上千张图片的需求,一个用于智慧城市的算法应用,每年都有数十万张图片的稳定需求。

2.语音方面:头部公司累计应用的标注数据集已达百万小时以上,每年需求仍以20%-30%的增速上升,要求数据服务商不仅要掌握专业的声学知识、数据标注经验,还要拥有语音合成的算法能力。

3.自然语言处理方面:随着工业、医疗、教育的AI应用产品进一步爆发,将会有更多交互方式出现,自然语义数据处理的需求将会持续增长,有望成为继图像、语音之后的第三大增量市场。

图片

这些海量的数据几乎全部依赖数据标注师手工进行标注,数据标注行业的缺口十分可观,并且数据标注已经在各行业产生了极广的应用,行业也开始逐渐升级,走向产业化。在行业发展的过程中,行业人才的培养必然是最大的内驱力。

“得数据者,得人工智能”。未来,随着AI应用场景逐渐多领域化,在数据标注行业内部,从业者也必将随着AI行业而一同进入细分市场追逐阶段,可谓机遇与挑战并行。

· One min read

人工智能数据标注产业国家政策梳理:行业已上升至国家战略

时间:2021-02-18 来源:消费日报网

人工智能作为新一轮产业变革的核心驱动力,将进一步创造新的引擎,重构生产、分配、交换、消费等经济活动各环节,催生新技术、新产品、新产业、新业态、新模式。

图片

近年来,我国政府高度重视人工智能的技术进步与产业发展,目前人工智能已上升国家战略。在全国人大常委会中提到要加强立法理论研究,重视对人工智能、区块链、基因编辑等新技术新领域相关法律问题的研究。

人工智能技术的应用正在改变着我们的生活。而在人工智能产业高速发展的背后,数据标注师这个新职业的需求及人数也正在壮大。数据标注行业流行着一句话,“有多少智能,就有多少人工”。目前AI算法能学习的数据,必须通过人力逐一标注,这些人力被称为“人工智能的老师”为人工智能搭建基础。 AI优评希望能有更多的识之士,关注并加入到人工智能-数据标注行业,共同参与和推进行业发展!

全国人工智能数据标注产业
相关政策汇总
2015.05
政策:《中国制造2025》
要点:首次提及智能制造,提出加快推动新一代信息技术与制造技术融合发展,把智能制造作为两化深度融合的主攻方向,着力发展智能装备和智能产品,推动生产过程智能化。
2015.07
政策:《关于积极推进“互联网+”行动的指导意见》
发布机关:国务院
要点:该《指导意见》中将人工智能作为其主要的十一项行动之一。明确提出,依托互联网平台提供人工智能公共创新服务,加快人工智能核心技术突破,促进人工智能在智能家居、智能终端、智能汽车、机器人等领域的推广应用;要进一步推进计算机视觉、智能语音处理、生物特征识别、自然语言理解、智能决策控制以及新型人机交互等关键技术的研发和产业化。
2016.03
政策:国务院《国民经济和社会发展第十三个五年规划纲要(草案)》
发布机关:国务院
要点:人工智能概念进入“十三五”重大工程。
2016.04
政策:机器人产业发展规划(2016-2020年)
发布机关:工业和信息化部、国家发展改革委、财政部等三部委
要点:2020年具体目标如下:
产业规模持续增长。自主品牌工业机器人年产量达到10万台,六轴及以上工业机器人年产量达到5万台以上。
技术水平显著提升。工业机器人速度、载荷、精度、自重比等主要技术指标达到国外同类产品水平
集成应用取得显著成效。完成30个以上典型领域机器人综合应用解决方案,并形成相应的标准和规范,实现机器人在重点行业的规模化应用,机器人密度达到150以上。
2016.05
政策:《“互联网+”人 工智能三年行动实施方案》
发布机关:国家发展改革委、科技部、工业和信息化部、中央网信办
要点:明确提出到 2018 年国内要形成千亿元级的人工智能市场应用规模。规划确定了在六个具体方面支持人工智能的发展,包括资金、系统标准化、知识产权保护、人力资源发展、国际合作和实施安排。规划确立了在 2018 年前建立基础设施、创新平台、工业系统、创新服务系统和 AI 基础工业标准化这一目标。
2016.07
政策:《“十三五”国家科技创新规划》
发布机关:国务院
要点:要大力发展泛在融合、绿色宽带、安全智能的新一代信息技术,研发新一代互联网技术,保障网络空间安全,促进信息技术向各行业广泛渗透与深度融合。同时,研发新一代互联网技术以及发展自然人机交互技术成首要目标。
2016.09
政策:《国家发展改革 委办公厅关于请组织申报“互联网 +”领域创新能力建设专项的通知》
发布机关:发改委
要点:人工智能的发展应用问题,为构 建“互联网+”领域创新网络,促进人工智能技术的发展,应将人工智能技术纳入专项建设内容。
2016.11
政策:“十三五”国家战略性新兴产业发展规划
发布机关:国务院
要点:发展人工智能。培育人工智能产业生态,促进人工智能在经济社会重点领域推广应用,打造国际领先的技术体系。
2017.03政府工作报告中提到,要加快培育壮大新兴产业。全面实施战略性新兴产业发展规划,加快人工智能等技术研发和转化,做大做强产业集群。
2017.07
政策:《新一代人工智能发展规划》
发布机关:国务院
要点:明确指出新一代人工智能发展分三步走的战略目标,到2030年使中国人工智能理论、技术与应用总体达到 世界领先水平,成为世界主要人工智能创新中心。
2017.10
政策:十九大报告
要点:将推动互联网、大数据、人工智能和实体经济深度融合。
2017.12
政策:《促进新一代人工智能产业发展三年行动计划(2018-2020年)》
发布机关:工信部
要点:它作为对7月发布的《新一代人工智能发展规划》的补充,详细规划了人工智能在未来三年的重点发展方向和目标,每个方向的目标都做了非常细致的量化。
2018.01
政策:《人工智能标准化白皮书(2018版)》
发布机关:2018人工智能标准化论坛
要点:国家标准化管理委员会宣布成立国家人工智能标准化总体组、专家咨询组,负责全面统筹规划和协调管理我国人工智能标准化工作,并对《促进新一代人工智能产业发展三年行动计划(2018-2020年)》及《人工智能标准化助力产业发展》进行解读,全面推进人工智能标准化工作。
2018.03
政策:2018年国务院政府工作报告
发布机关:国务院
要点:“人工智能”继2017年政府工作报告中首次出现后,今年再度被列入政府工作报告正文。政府工作报告强调了“产业级的人工智能应用”。做大做强新兴产业集群,实施大数据发展行动,加强新一代人工智能研发应用,在医疗、养老、教育、文化、体育等多领域推进“互联网+”。发展智能产业,拓展智能生活。运用新技术、新业态、新模式,大力改造提升传统产业。”
2018.04
政策:《高等学校人工智能创新行动计划》
发布机关:教育部
要点:从“优化高校人工智能科技创新体系”“完善人工智能领域人才培养体系”和“推动高校人工智能领域科技成果转化与示范应用”三个方面提出18条重点任务,着力推动高校人工智能创新。
2018.11
政策:《新一代人工智能产业创新重点任务揭榜工作方案》
发布机关:工信部
要点:征集并遴选一批掌握人工智能核心关键技术、创新能力强、发展潜力大的企业、科研机构等,调动产学研用各方积极性。
2019.03
政策:《2019年政府工作报告》
发布机关:国务院
要点:促进新兴产业加快发展。深化大数据、人工智能等研发应用,培育新一代信息技术、高端装备、生物医药、新能源汽车、新材料等新兴产业集群,壮大数字经济。加快在各行业各领域推进“互联网+”。
2019.03
政策:《关于促进人工智能和实体经济深度融合的指导意见》
发布机关:中央深改委
要点:提出促进人工智能和实体经济深度融合,坚持以市场需求为导向,以产业应用为目标,深化改革创新,优化制度环境,激发企业创新活力和内生动力,结合不同行业、不同区域特点,探索创新成果应用转化的路径和方法,构建数据驱动、人机协同、跨界融合、共创分享的智能经济形态。
2019.06
政策:《新一代人工智能治理原则》
发布机关:科技部

· One min read

谈及人工智能,第一个映入人们脑海的算法、建模、无人驾驶、VR全景等等比较宏观的名词和行业动态,似乎忽略了作为人工智能基础底层的数据标注行业,数据是人工智能的核心之一,获取高质量的标注数据对于人工智能本身的发展至关重要。

图片

对于想要入行互联网行业的创业者而言,AI标注未来必定成为人工智能产业链的一环,但就目前的发展而言,国内的标注公司仍然处于原始阶段,因此在清沐淋看来,数据标注行业仍然是一个热门,是创业的首选互联网创业项目之一。

标注永远不只是标注

图片

数据标注永远不只是标注,更应该成为业务的参与者。数据标注不再是为了标注而标注,更需要理解业务,为业务和算法团队提供更加合理符合项目的标注服务。但在现在的市场上存在的数据标注团队,基本上都是被制定好需求和规范,被动的去完成标注任务。就目前而言,还没有把数据做的更加渗透的标注公司,因此在未来数据标注作为创业项目时大有所为的。

单一的标注业务作为创业项目发展受限

图片

数据存储、标注任务分发、数据标注、流转、质检、审核一系列的流程下,一个完成的数据标注任务才算完成。如果单纯做数据标注,抛开断档期不说,前期在没有任何经验的情况系,能得到的市场份额非常小,甚至其实就是压成本,但压成本,你压不过在校学生,压不过标注基地。

因此作为初创团队,清沐淋的建议是从原本单纯的数据标注,在开始创业的时候就为自己增加创收资本,甚至是参与到客户的业务领域,通过自身的标注经验和不断学习,为客户提供标注建议,告诉他如何标注,怎么做标签,一个合格的质检员又需要具备哪些技能。

图片

随着人工智能的加速发展,数据标注早已经不再是最开始的样子。如今数据标注的转型正在加速进行,AI模型反哺人工标注,早已成为数据标注行业内通用的做法,“科技”成为了数据标注的新标签,通过科技的手段,数据标注成为了一项新的技术型产业。

10年前,我们错过了淘宝,8年前,我们错过了百度,5年前,我们错过了公众号,今天,你还要继续错过数据标注发展如此好的互联网创业项目吗?

· One min read

为什么3D点云数据在人工智能自动驾驶领域需求越来越大

1)硬件设备采集性能更好了:

随着3D采集技术的快速发展,3D传感器越来越多且价格实惠,自动驾驶汽车搭载的传感系统已经包括各种类型的3D扫描仪、激光雷达和RGB-D摄像机(如Kinect、RealSense和RealSense、苹果深度相机)来进行周围环境的感知。

2)3D数据可以提供更多的维度信息

这些传感器获取的3D数据可以提供丰富的几何、形状和比例信息;与二维图像相辅相成,三维数据提供了一个以更好地了解机器周围的环境的机会。三维数据通常可以用不同的格式来表示。包括深度图像、点云、网格和体积网格。作为一种常用的格式,点云保留了原始的几何信息在三维空间中,不需要任何离散化。因此,它是许多场景理解相关的首选表示方法。

3)深度学习技术可以处理无序的3D数据的方法越来越多

深度学习作为人工智能领域的主要技术,深度学习已经成功用于解决各种二维视觉问题。然而,由于通过深度神经网络处理点云的过程中面临的独特挑战,点云上的深度学习仍处于起步阶段。近来,点云上的深度学习更加蓬勃发展,众多的方法正在提出解决这一领域的不同问题。

点云上的深度学习一直吸引着更多的和更多的关注,特别是在过去五年。一些公开的数据集也被发布,如ModelNet , ScanObjectNN , ShapeNet , PartNet ,S3DIS , ScanNet , Semantic3D , ApolloCar3D, and the KITTI Vision Benchmark Suite 。这些数据集进一步推动了深度学习在三维点云上的研究。随着越来越多的方法拟解决与点云处理有关的各种问题,包括3D形状分类、3D物体检测和跟踪、3D点云分割、3D点云对准、6-DOF姿态估计和3D重建,有关于三维数据的深度学习的调查研究越来越的发布。

3D点云数据在自动驾驶中的优势有什么优势?

在人工智能自动驾驶领域中,准确的环境感知和精确的定位是自动驾驶汽车在复杂动态环境中能够进行可靠导航,信息决策以及安全驾驶的关键。这两个任务需要获取和处理真实环境中的高度准确且信息丰富的数据。为了获得此类数据,无人车上或者移动测量车上通常装备多种传感器,例如LiDAR或者相机。传统上,相机捕获的图像数据能够提供二维语义和纹理信息,且低成本和高效率,是感知任务中最常用的数据之一。但是,图像数据缺少三维地理信息。因此,由LiDAR收集的密集的、准确的、具有三维地理信息的点云数据也应用于感知任务中。此外,LiDAR对照明条件的变化不敏感,可以在白天和夜晚工作,即使有强光和阴影干扰,是3D点云数据的优势。

3D点云在自动驾驶领域中的应用可以分为以下两个方面:

基于场景理解和目标检测的实时环境感知和处理;

基于可靠定位和参考的高精度地图和城市模型的生成和构建。这些应用具有一些类似的任务,可以大致分为三种类型:点云分割,三维目标检测和定位以及三维目标分类和识别。这项技术的发展引发了自动驾驶领域对3D点云数据自动处理与分析的日益迫切的需求。

有哪些可以用的3D点云 数据标注工具?

当下对3D点云数据的需求越来越大,需要更加好用的3D点云数据标注工具对数据进行快速标注,整理了几个3D点云的数据标注工具,国外有 PCAT_Open_Source, Semantic-Segmentation-Editor等,国内有很多标注平台均有自己的3D点云标注工具,但是并未对外开放使用,觉醒向量开发的LabelHub在线标注工具平台,即将开放3D点云标注工具,欢迎关注并体验。

图片

· One min read

“具有执行感知功能(例如感知,学习,推理和解决问题)的能力的机器被认为拥有人工智能。当机器具有认知能力时,就会存在人工智能。 判断AI的基准是涉及推理、语音和视觉是否接近或达到人类水平。”

图片

一、入门人工智能

弱AI(Narrow AI):当机器可以比人类更好地执行特定任务时。

通用AI(General AI):人工智能可以以与人类相同的精度水平执行任何智力任务时达到通用状态。

强AI(Strong AI):当AI在许多任务中都能击败人类时,它就是强AI。

如今,人工智能已在几乎所有行业中使用,为所有大规模集成人工智能的公司提供了技术优势。麦肯锡认为,与其他分析技术相比,人工智能有潜力创造6000亿美元的零售价值,为银行业带来50%的增量价值。在运输和物流领域,潜在收入增长了89%以上。

具体来说,如果企业将AI用于其营销团队,则可以使平凡而又重复性的任务自动化,从而使销售代表可以专注于诸如建立关系,培养领导等任务。企业可以使用AI分析和推荐来制定制胜战略。

简而言之,人工智能提供了一种尖端技术来处理人类无法处理的复杂数据。 AI将多余的工作自动化,使工人可以专注于高水平的增值任务。大规模实施AI可以降低成本并增加收入。

图片

二、人工智能简史

如今,人工智能已成为流行语,尽管这个术语并不新鲜。 1956年,一群来自不同背景的前卫专家决定组织有关AI的夏季研究项目。 四个聪明的人领导了这个项目。 John McCarthy(达特茅斯学院),Marvin Minsky(哈佛大学),Nathaniel Rochester(IBM)和Claude Shannon(贝尔电话实验室)。该研究项目的主要目的是解决“原则上可以精确地描述出学习的每一个方面或智能的任何其他特征,从而可以制造出机器来对其进行仿真”。

这次会议的提议包括:

1)自动电脑

2)如何将计算机编程为使用某种语言?

3)神经元网

4)自我提升

这导致了可以创建智能计算机的想法。 充满希望的新时代开始了-人工智能。

三、人工智能类型:

图片

人工智能可以分为三个子领域:

1)人工智能

2)机器学习

3)深度学习

四、什么是机器学习?

机器学习是研究从示例和经验中学习的算法的艺术。机器学习基于这样的想法,即数据中存在一些已识别的模式,可用于将来的预测。与硬编程规则的区别在于,机器会自行学习以找到此类规则。

五、什么是深度学习?

深度学习是机器学习的一个子领域。深度学习并不意味着机器学习更多的深入知识;而是意味着机器使用不同的层从数据中学习。模型的深度由模型中的层数表示。例如,用于图像识别的Google LeNet模型有22层。在深度学习中,学习阶段是通过神经网络完成的。神经网络是一种结构,其中各层相互堆叠。

图片

六、人工智能与机器学习

我们大多数的智能手机,日常设备甚至互联网都使用人工智能。想要宣布其最新创新的大公司通常会交替使用AI和机器学习。但是,机器学习和AI在某些方面有所不同。

AI(人工智能)是训练机器执行人类任务的科学。这个术语是在1950年代发明的,当时科学家开始研究计算机如何自行解决问题。

图片

人工智能是一台具有类人特性的计算机。它可以轻松,无缝地计算我们周围的世界。人工智能是计算机可以执行相同操作的概念。可以说,人工智能是模仿人类能力的大型科学。

机器学习是AI的一个独特子集,它可以训练机器如何学习。机器学习模型会寻找数据中的模式,然后尝试得出结论。简而言之,无需人工对机器进行编程。程序员提供了一些示例,计算机将从这些示例中学习如何做。

七、AI都在哪里使用?

人工智能具有广泛的应用:

人工智能用于减少或避免重复任务。例如,AI可以连续重复任务,而不会感到疲劳。实际上,人工智能永远不会停止,对执行的任务无关紧要。

图片

人工智能改善了现有产品。在机器学习时代之前,核心产品是建立在硬编程规则之上的。公司引入人工智能来增强产品的功能,而不是从头开始设计新产品。你可以想到一些社交平台的照片。几年前,你必须手动标记朋友。如今,在AI的帮助下,社交平台给你推荐朋友。

从市场营销到供应链,金融,食品加工等行业,人工智能被广泛应用。根据麦肯锡的一项调查,金融服务和高科技通信在AI领域处于领先地位。

八、为什么AI蓬勃发展?

自90年代以来,随着Yann LeCun的开创性论文出现了神经网络。但是,它在2012年左右开始变得出名。对其受欢迎程度的三个关键因素解释为:

1)硬件

2)数据

3)算法

图片

机器学习是一个实验领域,这意味着它需要有数据来测试新的思想或方法。随着互联网的繁荣,数据变得更加易于访问。此外,像NVIDIA和AMD这样的大公司也为游戏市场开发了高性能的图形芯片。

1.硬件

在过去的二十年中,CPU的功能爆炸性增长,使用户可以在任何笔记本电脑上训练小型的深度学习模型。但是,要处理用于计算机视觉或深度学习的深度学习模型,你需要一台功能更强大的机器。多亏了NVIDIA和AMD的投资,新一代GPU(图形处理单元)才问世。这些芯片允许并行计算。这意味着机器可以在多个GPU上分离计算以加快计算速度。

例如,使用NVIDIA TITAN X,需要花两天的时间来为传统CPU训练数周的ImageNet模型。此外,大公司使用GPU集群通过NVIDIA Tesla K80训练深度学习模型,因为它有助于降低数据中心成本并提供更好的性能。

2.数据

深度学习是模型的结构,而数据则是使其活跃的基础。数据为人工智能提供动力。没有数据,什么也做不了。最新技术已经突破了数据存储的界限。在数据中心中存储大量数据比以往任何时候都更加容易。

互联网革命使数据收集和分发可用于馈送机器学习算法。如果你熟悉Instagram或其他任何带有图像的应用程序,则可以猜测它们的AI潜力。这些网站上有数以百万计的带有标签的照片。这些图片可用于训练神经网络模型以识别图片上的对象,而无需手动收集和标记数据。

图片

人工智能与数据结合是新的黄金时代。数据是任何公司都不应忽视的独特竞争优势。 AI从你的数据中提供最佳答案。如果所有公司都可以使用相同的技术,那么拥有数据的公司将比其他公司具有竞争优势。举个例子,世界每天创造约2.2 EB,即22亿千兆字节。公司需要异常多样化的数据源,以便能够找到模式并进行大量学习。

3.算法

硬件比以往任何时候都更加强大,可以轻松访问数据,但是使神经网络更可靠的一件事是开发了更精确的算法。初级神经网络是没有深度统计特性的简单乘法矩阵。自2010年以来,在改善神经网络方面取得了令人瞩目的发现。人工智能使用渐进式学习算法来让数据进行编程。这意味着,计算机可以自学如何执行不同的任务,例如发现异常,成为聊天机器人。

九、总结

人工智能和机器学习是两个令人困惑的术语。人工智能是训练机器模仿或复制人类任务的科学。科学家可以使用不同的方法来训练机器。在AI时代的初期,程序员编写了硬编程的程序,即键入机器可以面对的每一种逻辑可能性以及如何响应。当系统变得复杂时,很难管理规则。为了克服这个问题,机器可以使用数据来学习如何处理给定环境中的所有情况。

拥有强大的AI的最重要功能是拥有足够多的数据,并且异构性强。例如,一台机器只要有足够的单词可以学习就可以学习不同的语言。AI是新的尖端技术。麦肯锡估计,人工智能可以以至少两位数的速度推动每个行业的发展。

本文来源网络

· One min read

数据、算力、算法是推动人工智能技术进步的“三驾马车”,其中数据是人工智能行业的发展基石,数据对人工智能很重要,“没有好的数据,人工智能没有未来”早已是行业共识。

新变化在于,随着人工智能技术落地场景,不同场景提出了更高质量、更多元的数据需求。

对视觉数据标注需求非常大的自动驾驶领域,很好地展现了数据标注服务的业态变化。

在2016年,人工智能随AlaphGo强势崛起并引发一系列创业、创新活动后,数据标注迎来第一次真正意义上的爆发,但由于当时各公司的人工智能业务多处于“跑Demo"、“做研发”的落地前环节——在质上,用标准数据集就可满足;在量上,规模也不可与现在相比。

所以当时的数据标注行业门槛较低,小作坊遍地开花,然而,从近两年的市场数据来看,第三方数据标注与审核公司开始变多;原本十分分散的数据标注行业走向专业化的拐点正在发生。随着人工智能在金融、医疗、安防等多个领域实现技术落地,人工智能公司对数据的使用逐渐有“大”的趋势,整个行业正在逐渐向多模态、多场景、高精度的方向发展。而促进这些变化的根本原因主要是三点:

一是成本问题。随着数据量越来越大,如果雇佣大量人力进行数据标注,大多数人工智能公司都无法攻克人员管理的挑战和承担随着数据量增长的巨额薪资。

二是质量问题。因为散兵游勇和小型工作室,较难在岗前培训、质量控制和数据安全上做足够的投入。

三是客户结构改变带来的新机会。即除了人工智能公司或有相关业务的科技公司外,各行各业的企业都开始更多投入数字化和人工智能,其中部分企业,一方面有对外采购技术服务的习惯和流程,一方面又缺乏非常先进、成熟的内部人工智能技术,比如无法像很多人工智能公司那样,快速开发自己的标注提效工具,这类公司会更加倚重专业的第三方服务,这扩大了整体市场规模。

在数据标注行业拐点将至的时候,对于专业人才的需求逐渐浮出水面,AI优评在人才培养方面率先迈出了步伐,通过与权威机构的官方合作,AI优评建立起一整套科学的人才评价模型,并且为通过评价考核的学员颁发由国家职业资格培训鉴定实验基地统一核发的《人工智能技术服务-数据标注与审核》高新技术能力证书,为行业发展做出贡献。

· One min read

数据标注师是随着人工智能的发展出现的一个新兴就业岗位。2020年2月,“人工智能训练师”正式成为新职业并纳入国家职业分类目录。数据采集和标注是人工智能训练师的主要任务之一。数据标注师的工作是教会 AI 认识数据,有了足够多、足够好的数据,AI 才能学会像人一样去感知、思考和决策,更好地为人类服务。例如,疫情期间,百度山西数据标注基地完成的戴口罩的人脸图像标注,采集大量的戴口罩的人脸照片后,数据标注师对人脸的眉毛、眼镜、颧骨等人脸关键点进行精准的标注,标注的特征点越多,AI 就越能精确地识别戴口罩场景下的人脸,让人们在不摘口罩的情况下也能实现精确的体温测量,或是通过人脸闸机。

针对新的就业方式、新的创业路径,相关部门也在创新就业服务。近日,13个相关部门联合发布了《关于支持新业态新模式健康发展激活消费市场带动扩大就业的意见》,为劳动者提供多样的就业机会。多部门将联合培育市场新个体,进一步降低个体经营者线上创业就业成本,让新业态从业者更有保障。灵活就业的权益保障、社会保障等政策将陆续推出。

响应国家号召,百度在7月初就宣布,未来5年将在百度山西数据标注基地培养5万名 AI 数据标注师,并引入更多 AI 合作伙伴。百度与山西的合作模式,未来还将拓展到更多省市,提供更多的 AI 新岗位,支持当地科技产业发展。

在行业发展之下,对于数据标注的人才培养也开始提上了日程。AI优评走到了行业的前面。通过与权威部门合作,AI优评建立起了一个完整的人才评价体系,科学的对数据标注人才进行评价,为考核合格者颁发国家职业资格培训鉴定实验基地统一核发的《人工智能技术服务-数据标注与审核》高新技术能力证书,并直接推荐就业,帮助每一个想要成为数据标注师的人才实现梦想。

· One min read

近年来,伴随着人工智能的不断发展,与人工智能相关的各个产业也开始逐步发展壮大并走入人们的视线。其中,数据标注作为人工智能的基础产业,更是以极快的发展速度引发了关注,并且正在成为越来越多人的择业选择。但是对于数据标注,大部分人的了解仍然处于基本真空的状态。那么,数据标注到底是干什么的呢?

图片

要想了解这个问题,首先需要了解人工智能的核心技术:计算机视觉。何谓计算机视觉?简单来说计算机视觉指的是从图像和视频中提出数值或符号信息的一个计算。形象点说的话就是研究如何让计算机具备像人一样的眼睛去看到图像,并且理解图像。其任务范围相当广泛,包括且不限于:图像分类,人脸识别;车辆检测,行人检测;语义分割,实例分割;目标跟踪,视频分割;图像生成,视频生成。

图片

图像识别是计算机视觉里面的基石。现在已经广泛的运用到了生活中的方方面面。在这一阶段,数据标注的任务便是对图像进行打点标注,例如对人脸进行标注、对车牌进行标注等。计算机视觉里面的第二个任务就是目标检测,本质上就是要把所有的感兴趣的前景目标检测出来,把它的类别贴上标签。在这一阶段,数据标注的任务开始发生变化,产生了例如2D拉框类任务及障碍物框选等。除此之外,分割是计算机视觉中非常男的一个任务,分为图像的语义分割及个体的分割。语义分割做的事情就是给了你一张图片之后,需要把构成图的不同的类别分割成一块一块独立的个体,并把它们准确地标记出来。而个体的分割相当于在检测任务上叠加了分割,比如图例中不仅要把狗分割出来,还要区分某个狗在哪个位置,把它的位置信息标记出来。

图片

这些便是目前比较主流和基础的数据标注任务。当然,伴随着人工智能行业的发展及对数据精度需求的不断提高,数据标注的任务早已经远远不止于此,并且还在不断增加新的内容。在这样的基础之下,培养数据标注专业性人才就变得格外重要。然而纵观目前数据标注行业的人才需求,现在的人才供给远远不能满足。AI优评作为专业的数据标注人才中心,联合国家职业资格培训鉴定实验基地统一核发的《人工智能技术服务-数据标注与审核》高新技术能力证书,为行业人才建立一个透明的行业标准,为行业发展做出自己的努力。

· One min read

如果把人工智能比作一个懵懂的幼童,那么把数据标注师看做是人工智能的“老师”也毫不为过。人工智能机器要想认识世界需要依赖大量已经标注过的数据,数据标注让机器理解并认识世界,是人工智能金字塔的基础力量。

相比于人工智能行业的繁荣与夺目,数据标注则显得似乎没有那么耀眼,甚至在前期还被贴上了很多偏见。殊不知,在人工智能高速的发展进程之下,数据标注早已经实现了“脱胎换骨”,成为了新时代下最炙手可热的行业之一。 AI 技术在全场景的落地以及大数据时代的到来产生了海量、指数级别的数据,数据获取也相对变得容易,然而,想要获得大量的已标注数据却并不容易,往往需要付出很大的人力、物力、财力成本。在医疗 AI 等专业门槛较高的细分领域,缺乏标注数据就成了阻碍行业发展的“绊脚石”,人工智能的进一步发展,不仅仅依赖于自身金属的进一步成熟,也同样依赖于数据标注行业的发展进步。 目前,数据标注的类型主要有:拼音标注、韵律标注、词性标注、音素时间点标注、语音转写、分类标注、打点标注、标框标注、区域标注等等。由于需要标注的数据规模庞大且成本较高,一些互联网巨头及一些 AI 公司很少自己设有标注团队,大多交给专业的数据标注公司完成。 数据标注行业的发展越来越趋向于专业化,早期多以中文数据标注为主,现在随着多语种、方言、个性化标注等发展标注需求的增加,并且,随着人工智能开始逐渐渗透到各个行业之中,在数据标注时,如果没有相关行业的专业知识,便不可能完成标注的工作。 这些都在提示这数据标注行业对于专业人才的需求。事实显示也的确是如此,目前,尽管市面上有着大量对于专业数据标注师人才的需求,但是数据标注人才的供给却远远无法满足当下的需求。如何培养人才,建立行业准入标准与合格的人才培养机制是关键。AI优评同权威机构合作,共同构建起了一整套专业科学的数据标注人才评价体系,学员可以在AI优评通过考核获得国家职业资格培训鉴定实验基地统一核发的《人工智能技术服务-数据标注与审核》高新技术能力证书,并可以直接对接到人才需求方实现就业,为行业输送更多专业的人才,以此推动行业的进一步发展。

· One min read

近年来,伴随着人工智能行业的不断发展,人们已经可以清楚感受到未来智能化、数字化时代来临的脚步。在新时代之下,未来的职业分类也必将迎来新的变化,而数据标注师成为了第一个数字时代的热门行业。

     在数字时代,尽管一些旧的行业会被逐渐淘汰,但是必然会有大量的新行业诞生,一方面,数字技术辅助工作者简化办公流程和提升办公效率,可视化办公软件广泛应用等简化对于工作者记忆力、运算能力甚至学习底层程序的要求。另一方面,数字技术辅助工作中的分工合作,工作内容被分解成众多工作任务,工作者通过网络设备可以与其他工作者快速对接,将工作任务聚合共同完全一项工作,这有助于具有单一或者少量专业化技能工作者顺利完成工作。

  以数据标注师为例,在数字技术的加持之下,数据标注师们对于工作的硬性条件要求被压缩到了最小,只要通过一台电脑与一根网线便能够完成工作内容。

  由于人工智能快速发展,数字标注已经成为一份热门的工作。在进行机器学习中的有监督学习或半监督学习时,通常需要对训练集数据进行标注,辅助计算机理解数据。这也使得对于数据标注工作者需求日益增加,数据显示,目前,全国数据标注师的从业人数已经超过了2000万。

  数据标注工作覆盖面较广,既有简单易学的岗位,只需对图片、文本、语音等数据完成分类、框选、标记即可,本次收集的数据中98.5%的兼职岗位不要求学历限制;也包括需要专业技能岗位,如医学标注、语料标注等。数据标注也可以满足不同就业需求,既可以作为短期过渡岗位,快速上手,同样可以作为长期职业规划,也可以凭借积累经验,实现数据标注师-数据标注师组长-业务助理-业务主管的职业规划。

     在行业快速发展的时候,如何保证行业一直处于正确的发展路径,避免“内卷化”的出现是目前数据标注行业最需要注意的内容。这一问题的唯一解便是人才的培养。纵观目前市场,对于专业数据标注师的人才需求在大量增加,但是在人才培养方面却仍待发力。AI优评作为数据标注行业人才标准体系的建立者,不仅联合国家职业资格培训鉴定实验基地统一核发的《人工智能技术服务-数据标注与审核》高新技术能力证书,为行业人才评价提供一个可靠的标准,更同B端企业实现了对接,直接对优秀的人才提供就业机会,保障优秀人才的输出,为行业发展做出自己的努力。