如今,世界正在经历一场影响范围甚广的技术革命,信息技术(IT)正快速决定着一切事物的发展进度和计划。计算机问世之后,出色的想法得以转化为出色的创新。比如人工智能和机器学习,这两种技术让生活变得轻松起来,也让业务流程更加简洁高效。 机器学习和人工智能依靠计算算法复制人类的智能行为,包括自动语音识别、增强现实和神经网络机器翻译。这些不同领域技术创新的成功问世促进了人们对计算机可视化和解释图像的深入研究。通过使用不同的软件,计算机视觉努力激活机器的双眼去观察和解释图像。 技术已经证明,计算机视觉可为人类和科学家提供自动驾驶汽车、无人机、面部识别和更多其他的应用。随着技术领域引入图像标注技术,人们开始享受到这一非同寻常的发展。 在计算机视觉领域,图像标注是一项重要的任务。尽管这项技术已经发挥了很大作用,但要想充分理解其功能以及使用情况,还需要揭开很多隐藏的信息。 什么是图像标注?
图像标注是一种创新型的计算技术,人们需要手动识别并定义图像中的区域,并为图像中指定的区域进行基于文本的描述。图像标注会在计算机视觉系统呈现新图像或数据时催化模式识别过程。识别图像上图案或标签的速度是不同的。与具有不同标签的图像或数据相比,具有类似标签的图像或数据识别要更加简单快捷。 图像标注技术主要由人工智能(AI)工程师使用,为计算机视觉模型的开发提供有关图像的信息。
图像标注的多种技术
2D边界框
使用2D边界框technique-Labelops.ai标
2D边界框技术是用于标注图像的重要技巧之一。使用这种方法时,标注器会在特定帧和位置围绕感兴趣的对象创建一个边界框,标注人员可以在每个对象的边缘位置创建位置锚点。 很多时候,对象看起来可能都是一样的。在这种情况下,标注人员可以为图像中的所有对象绘制边界框。另外,当位置中出现不同的对象时,必须在每个对象周围都绘制边界框。例如,如果位置中有汽车、自行车和行人,标注人员就应该在它们周围绘制边界框。绘制完成后,标注器将选择最适合框中对象的标签。 3D边界框
使用3D边界框technique-Labelops.ai标注的图像
3D边界框也被称为立方体,是一种类似于2D边界框的技术。标注器在每个图像周围创建边界框。锚点被放置在每个对象的边缘位置。创建这些边界框是为了覆盖某个特定的位置和帧。但是,两种技术的不同之处在于3D边界框可以显示出被标注对象的深度。 多边形标注
使用多边形标注technique-Labelops.ai标注的图像
多边形标注是一种出色的图像标注技术,标注器可用于标注形状大小不规则的对象。这种技术十分有用:2D和3D边界框只能标注形状规则的图像,而在多边形标注中,标注器在感兴趣的图像周围创建多边形。这样可以更容易地准确预测出图像在多边形空间中的体积和位置。 折线
折线标注是一种奇妙的标注技术,主要功能是让计算机视觉系统感知到标注的边界、样条和线。标注器还可以利用折线标注技术来规划无人机的飞行轨迹。折线标注可以在图像中绘制直线或曲线,所以它可用于标注人行道、车道、输电线等其他边界。 关键点
使用关键点technique-Labelops.ai标注的图像
标注器可以用关键点追踪技术确定对象最外面的部位。这种技术也可以用来确定对象重要部位的大小和位置。打个比方,如果要标注一辆汽车,那么它的重要部位(如后视镜、前灯和车轮)都会被确定。 语义分割
使用语义分割technique-Labelops.ai标注的图像
如果想要通过将图像分割为不同的片段或区域来标注图像,可以选择语义分割,比如可以用其标注停车场的图像。一个停车场包括树木、草坪和人行道,这些组成部分都被分成了不同的片段,并被分别标注。 使用语义分割技术进行图像标注时,可能需要调整语义分割算法的阈值,这将有助于标注人员标注任何其需要的图像。 图像标注的步骤
- 分析项目的局限性 标注给定图像的第一步是分析项目的局限性。通过分析项目,标注人员可以对项目及其约束条件有一个大致的了解。
- 使用恰当的工具 标注人员可以使用的工具很多。但是,需要为将要标注的图像选择恰当的工具,之前所作的分析将有助于为特定图像选择最佳的工具。
- 使用恰当的技术 选好合适的工具之后,标注人员需要采用恰当的技术来标注特定图像,这就需要研究项目说明。采用恰当的技术标注的图像可作为训练数据。