Skip to main content

数据标注是AI实现智能的关键

· One min read

新基建浪潮呼啸而来,人工智能产业乘风而上。AI作为许多领域数字化与智能化转型的基础与关键,在这场时代风口前迎来了新腾飞。

这场自上而下的变革中,大量AI需求被释放,直接刺激了源头产业,站在人工智能产业链上游的数据服务商,首先吃到了红利。

据国内知名AI数据服务商景联文科技透露,近几个月来,公司接洽的客户量明显上升,有几个科技大厂订单进入了合同阶段,其中一个“万人采集”的项目已经启动。

对于人工智能产业而言,应用层AI产品的落地发展离不开数据的支撑,在智能化大潮来临之时,AI数据产业进入了新一轮加速期。

数据是AI智能化的关键 “没有数据,就没有人工智能。”这是行业内普遍认同的观点。 目前主流的深度学习算法,本质是在神经网络系统中,调节和优化各个层级之间的权重和阈值,当层数越多,对输入特征的抽象层次就越高,这也意味着算法模型能够处理更复杂、抽象的任务,同时,对数据的需求也就越大。

Facebook AI研究院负责人、深度学习三巨头之一的Yann LeCun曾坦言,“你需要数据来训练你的系统,你的数据越多,你的系统就会越精准。所以,从技术目标和商业角度来看,数据越多越好。”

在智能化成为时代趋势的今天,许多领域都在积极拥抱AI。从随喊即应的智能音箱,到能够辅助诊断的智能医疗系统,利用AI为自身赋能,升级迭代的领域与企业越来越多,数据需求如雨后春笋般冒出,前所未有地旺盛。

AI技术要实现商业化落地,进入到我们的生活,这个过程必然需要大量高质量、能被机器识别理解的结构化数据投入训练。

纵观人工智能的发展,从算法、算力之争,逐渐过渡到了数据。数据成为了一种稀缺社会软资源,其意义就如同石油之于第二次工业革命,可以说谁掌握的数据,谁就掌握了未来。