Skip to main content

· One min read

对数据标注行业稍微有些了解的人都知道数据标注进入门槛低,适合很多人兼职也适合创业。

    正是因为数据标注行业的门槛低这个特点最近两年从事数据标注的小公司小工作室如雨后春笋般的遍布全车

大大小小的县城。

    但是目前有个有趣的现象,那就是有很多进入数据标注行业做了一段时间的人慢慢的感觉数据标注行业就是

个坑?为什么有些人会说数据标注就是个坑呢?

    其实对与有上述问题认识的人我们认为,这些人多数都是有于对这个行业对自身条件的不了解,盲目的开始

进入数据标注行业的。为什么我们会这样说呢?下面就给给大家来分析下到底有哪几方面的原因:

一、有相当一部分人是听了朋友或者网上消息说这行很火爆,好做,门槛低,也有一部分人了因此租办公室

买电脑招人,然后就去群里面找分发项目的人就开张干起来了。可实际上这些人他们大多数都没有充分了解数据

标注行业,更没有认真仔细得去调查分析,到底自己能不能做好一个项目,到底自己能不能有质有量按时交付的

完成一个项目,到底自己有没有这个能力来管理项目。更多的人也没有去用长远的眼光去考虑数据标注项目。

二、数据标注项目虽然入门门槛低,但是相当一部分有于理解认知应变能力上都不能保证去做好数据标注项

目,还有一部分人由于自己对标注项目重视程度不足接到项目之后呢?不仔细认真的去阅读理解项目规则,更没

有很好的对规则质检标准去培训员工,而对员工的要求主要看重每天的产出效率,从而导致接到手的项目做的质

量很差,频繁的返工,有提项目甚至因为质量太烂项目方不给结算或者是结算比例很少,最终的结果就是做好些

个项目但基本都是赔钱。

三、虽然业内人都 说数据标注简单,但是标注项目他也是一个系统性的工程,一个项目能不能做好并不简单

的看项目好做就能赔钱。实际上决定项目赚不赚钱考验的是一个团队的项目管理水平,质量管理能力,运营能力

各方面因素的。一句话再好赚钱的项目也照样有人赚钱也有人赚钱,要赚钱不是那么简单的。

四、还有些工作室 、小公司因为对行业不够了解等他们做了一段时间后发现,自己团队经常会没有项目做,

而自己团队接项目的业务能力又不具备,甚至有的时候为了员工有活干去接一些价格极低根本就不赚钱的标注项

目,时间稍微一长这些工作室团队就会赔上很多钱最终关门倒闭。

五、下来要说的就是一部分人人兼职人员由于认识不到位,对项目的规则质量要求 文件不认真阅读消化理解

导致做的项目质量差返工有的甚至最后不结算,最终退出这行。更有一些人由于经验不足被标注行业的项目骗子

给忽悠到辛苦劳动到最后结算时找不到人。

标注行业本身由于进入门槛低,做的人很行业内盲目打价格战,导致很多转手二手三手的项目在质量工期的

要求下根本就不赚钱甚至赔钱,所以在这里也提醒大家做任何事都要谨慎而行。

· One min read

随着人工智能的迅猛发展与之相关的数据标注行业这几年也迎来了爆发性的成长,从事数据标注行业的人员快速的增长。

人们慢慢开始了解到数据标注之后发现数据标注行业门槛低,于是有一部分平时工作轻松人的就考虑数据标注兼职能做吗?

数据标注兼职好不好做?数据标注兼职靠不靠谱?

实际上到底数据标注兼职能不能做靠不靠谱这些都要结合多方面因素去考虑的:

一、可以确定的是数据标注兼职是可以做的而且这方面的兼职从业人群还很多。但是如果决定要做这个兼职那首先自己

就必须端正心态,正确看待这个工作。再简单的工作如果不仔细认真的对待照样还是有很多人于不好。

二、 做数据标注兼职一样要注意防范被行业蛀虫给骗了,辛苦劳动最后找不到发钱的人那是非常可悲的。做标注兼职大家

尽量到大平台,口碑信誉好的平台,做标注规则要求界限清晰的项目。尽量不要去相信那种缴纳会员费加盟费做数据标注培训的

那种人群,他们的主要目的在于收会员费培训费这些的,他们的项目多数都是接二手三手的项目,价格利润空间低的很。

三、千万不绿轻信数据标注培训这种社群的宣传,缴了培训费会费后保证虽时都有任务,虽时都有高价任务,质量要求低

等等,他们这种公司工作室是以收培训费会费为目的,团队管理松散,质量体系管理混乱,培训管理不严格,相当多项目到最后

都会出现质量差合格率低结算比例低扣费等情况 ,到最后给会员 说一句你们的质量太差,结算价格低等等理由。

最后给大家说一点做任何事情态度很重要,好的态度是成功的前提,防骗防上当要时刻警惕,多做调查多了解尽量做大平台

信誉好的平台的任务。

· One min read

人工智能行业内有这样一句话“有多少智能,就有多少人工”。当然这里的人工不是指生产流水线上的工人。这里的“人工”是指工作在人工智能最基础岗位上的小伙伴们。这个岗位是----数据标注、数据采集。我们知道人工智能的发展,得益于海量的数据采集和标注。机器是没有认知和记忆的。而数据采集和标注就相当于告诉了一个机器,这是什么东西,给机器的认知输入了“条件”。简单的说,如果你标注出错,那么人工智能也会出错。简单的说可能把梨子认识成苹果。

在人工智能发展起步阶段,技术发展不成熟,在很多方面的要求都不太严格。比如说,在数据标注这块领域,前几年可能只要你有电脑,会操作就可以做。而且很多数据标注公司为了降低成本会找很多不专业的兼职来完成数据标注的工作。所以整个数据标注行业从业人员的要求、门槛是比较低的。当然这也直接导致了数据标注的质量是不高的。

自2019年开始,越来越多的人工智能公司或项目,更加关注数据质量对AI智能的重要性和紧迫性,优质的数据才能有优质的智能结果,但是市场确认统一的专业课程及相关认证培训,人才市场一度混乱。一方面是人工智能公司找不到合适的专业的标注团队,另一方大量闲置人员又缺乏相关从业经验,人才供需结构矛盾越来越明显,造成AI公司对外包公司,外包公司对个人等相互之间的互不信任。为了解决这个问题,汇数从2019年初开始已经开始联合国内知名的人工智能公司及大厂,开始打造一套标准的且可持续的数据训练人才认证方案和体系,以规范现有的人才市场,为人工智能行业提供最专业的基础性人才大军。

图片

随着人工智能技术的发展,人工智能广泛的应用在生活、生产各个领域。人工智能对数据采集、数据标注有了更高、更专业、更精细化的要求。现在如果你还是一个只会操作电脑的计算机小白,那么你可能不适合数据标注这个岗位了。随着人工智能的发展,未来对数据采集、数据标注的质量要求会更高。那种粗制滥造的数据标注和采集,根本达不到AI行业发展的要求。所以,未来将有一大批不合格的数据标注员、数据采集员被这个行业无情的淘汰掉。

数据采集、数据标注是人工智能领域中最基础的岗位,虽然是初级岗位但它及其重要。数据标注的质量会直接关系到人工智能项目是否能成功落地。目前人工智能行业发展迅速,行业内的专业人才稀缺。而目前数据标注岗位的人才职业化、专业化程度都是较低的,为了满足AI行业的发展要求,在未来对数据标注员、数据采集员进行认证就是趋势,只有达到专业的认证,掌握专业的技能,才能更好的完成数据采集、数据标注的任务。而这种专业至上的生存法则,才更能满足人工智能行业的发展的要求。

· One min read

如今,世界正在经历一场影响范围甚广的技术革命,信息技术(IT)正快速决定着一切事物的发展进度和计划。计算机问世之后,出色的想法得以转化为出色的创新。比如人工智能和机器学习,这两种技术让生活变得轻松起来,也让业务流程更加简洁高效。 机器学习和人工智能依靠计算算法复制人类的智能行为,包括自动语音识别、增强现实和神经网络机器翻译。这些不同领域技术创新的成功问世促进了人们对计算机可视化和解释图像的深入研究。通过使用不同的软件,计算机视觉努力激活机器的双眼去观察和解释图像。 技术已经证明,计算机视觉可为人类和科学家提供自动驾驶汽车、无人机、面部识别和更多其他的应用。随着技术领域引入图像标注技术,人们开始享受到这一非同寻常的发展。 在计算机视觉领域,图像标注是一项重要的任务。尽管这项技术已经发挥了很大作用,但要想充分理解其功能以及使用情况,还需要揭开很多隐藏的信息。 什么是图像标注?

图像标注是一种创新型的计算技术,人们需要手动识别并定义图像中的区域,并为图像中指定的区域进行基于文本的描述。图像标注会在计算机视觉系统呈现新图像或数据时催化模式识别过程。识别图像上图案或标签的速度是不同的。与具有不同标签的图像或数据相比,具有类似标签的图像或数据识别要更加简单快捷。 图像标注技术主要由人工智能(AI)工程师使用,为计算机视觉模型的开发提供有关图像的信息。

图像标注的多种技术

2D边界框

使用2D边界框technique-Labelops.ai标

2D边界框技术是用于标注图像的重要技巧之一。使用这种方法时,标注器会在特定帧和位置围绕感兴趣的对象创建一个边界框,标注人员可以在每个对象的边缘位置创建位置锚点。 很多时候,对象看起来可能都是一样的。在这种情况下,标注人员可以为图像中的所有对象绘制边界框。另外,当位置中出现不同的对象时,必须在每个对象周围都绘制边界框。例如,如果位置中有汽车、自行车和行人,标注人员就应该在它们周围绘制边界框。绘制完成后,标注器将选择最适合框中对象的标签。 3D边界框

使用3D边界框technique-Labelops.ai标注的图像

3D边界框也被称为立方体,是一种类似于2D边界框的技术。标注器在每个图像周围创建边界框。锚点被放置在每个对象的边缘位置。创建这些边界框是为了覆盖某个特定的位置和帧。但是,两种技术的不同之处在于3D边界框可以显示出被标注对象的深度。 多边形标注

使用多边形标注technique-Labelops.ai标注的图像

多边形标注是一种出色的图像标注技术,标注器可用于标注形状大小不规则的对象。这种技术十分有用:2D和3D边界框只能标注形状规则的图像,而在多边形标注中,标注器在感兴趣的图像周围创建多边形。这样可以更容易地准确预测出图像在多边形空间中的体积和位置。 折线

折线标注是一种奇妙的标注技术,主要功能是让计算机视觉系统感知到标注的边界、样条和线。标注器还可以利用折线标注技术来规划无人机的飞行轨迹。折线标注可以在图像中绘制直线或曲线,所以它可用于标注人行道、车道、输电线等其他边界。 关键点

使用关键点technique-Labelops.ai标注的图像

标注器可以用关键点追踪技术确定对象最外面的部位。这种技术也可以用来确定对象重要部位的大小和位置。打个比方,如果要标注一辆汽车,那么它的重要部位(如后视镜、前灯和车轮)都会被确定。 语义分割

使用语义分割technique-Labelops.ai标注的图像

如果想要通过将图像分割为不同的片段或区域来标注图像,可以选择语义分割,比如可以用其标注停车场的图像。一个停车场包括树木、草坪和人行道,这些组成部分都被分成了不同的片段,并被分别标注。 使用语义分割技术进行图像标注时,可能需要调整语义分割算法的阈值,这将有助于标注人员标注任何其需要的图像。 图像标注的步骤

  1. 分析项目的局限性 标注给定图像的第一步是分析项目的局限性。通过分析项目,标注人员可以对项目及其约束条件有一个大致的了解。
  2. 使用恰当的工具 标注人员可以使用的工具很多。但是,需要为将要标注的图像选择恰当的工具,之前所作的分析将有助于为特定图像选择最佳的工具。
  3. 使用恰当的技术 选好合适的工具之后,标注人员需要采用恰当的技术来标注特定图像,这就需要研究项目说明。采用恰当的技术标注的图像可作为训练数据。

· One min read

活了这么久,我领悟到一个道理,就是我们总是无法随心所欲。怎么才算随心所欲,让世界没有秘密?这是电影《黑客帝国》的一段话。

世界变化得越来越快,而我们好像来不及反应。

如果没有互联网时代的到来,也许就没有《黑客帝国》这样的电影呈现。突然想写写这个时代的核心科技天才人物,给我们带来的科技变化。

传大的领导者都是伟大的学习者。

牛津大学研究人员先前在美国和英国进行研究显示,美国可能被机器人取代的职位比例为47%,英国为35%,中国为77%,日本为49%。

随着智能时代的到来,我们也开始对自己所属的行业工种产生新的审视,你现在所做的工作有没有可能在不久的将来变成机器自动化,让机器人取代,而我们要选择什么样的工作才能保证没有危机感,现在不光是人与人竞争。还有与这个大时代科技带来的创新的竞争。

工业时代最大的收获就是“执行力”而执行力务必是执行,按着一条条命令去严谨完成即可,他不需要你有过多的大脑分析,而只需要思考如何执行到位。

智能时代有可能将这种需要人工去执行的工种用自动化取代,而人们需要更多的是要有引领思维。

未来已来。

这就会逼着我们在很多行为上面做一些改变,看了一些关于马斯克和乔布斯的书,他们2个非常相似,喜欢设计,喜欢控制,追求细节上的完美极致。无论是乔布斯在设计手机上面的美学,还是马斯克发射火箭,都是在细节上达到了百分百,执行细节的苛刻,都贯彻到了骨子里。

关键是这样的大师级人物不论是从事哪一个行业都会十分出色,他们身上有一种多元化思考与实践,按现在的理解来说就是跨界奇才。

大师级人物,从来不拥有专业身份。马斯克是科学家、企业家、思想家,他的专业知识覆盖了火箭、工程学、物理学、人工智能、太阳动能源等学科领域,思想表达又像哲学家一样深刻而透彻。

马斯克的跨界能力来自超级阅读力。知识达到一定程度就是可以连接自动实现跨界并很好的运用。

乔布斯主张专注和简单。简单可能比复杂列难做到,你必须努力梳理思路,从而变得简单。苹果手机的设计界面,一开始黑白2种颜色整个界面只有一个开机键,真是少而简到了极致。

生活中的乔布斯,素食、禅修,冥想,样样都不是停留在语言上,他是在用真实的生活去参与感受,而不是停留在遵守各种宗教教条。

有趣的是乔布斯和马斯克在公司管理上面都很“暴力”,私下都被誉为“暴君”乔布斯最让员工可怕的是冷漠,而马斯克有点轻微的岐视智商不高的人。乔布斯不相信上帝,而马斯克是个连上帝都不愿意等待的人,他们都有着自己的追求和精神领空,在他们的世界中,所有人必须无条件的配合他们的指令。

暴君们只对待出色的人友好。实际上亚马逊的创始人贝索斯也是被员工认为很冷漠的人,在亚马逊任职十几年的管理人员说"贝索斯不是那种人,他不能容忍愚蠢,即使是偶然的愚蠢”。

无一例外,这些科技大佬们,都是从事自己热爱的事业,精力十足,并都有点偏执狂特质。在阅读这些人物自传时,也就理解了世界第一首富约翰·洛克菲勒写的《只有偏执狂才能成功》,还有安迪.格鲁夫写的《只有偏执狂才能生存》,看来偏执也是一种力量。

人工智能的出现与发展预示着世界上90%的人类工作将由机器人完成,未来穷人对富人和权力阶层的利用价值将逐渐消失,城市中心的住宅会变得低廉,能源采集来自光和风...人类从设计自己的生活,将逐渐升级为自我设计,新技术会赋予人们前所未有的能力。这是《人类简史》·赫拉利中的描写。

我们在享受着这些偏执狂一样的大佬们带给我们的科技感,同时也要思索自己对于社会的贡献在哪里,有没有可能被取代,如何让自己立足于不可取代的位置,随着人工智能的到来我相信这是每一个职场人士都会要去思考的问题。

如果人工智能真的来临,我们是否做好了准备,在从事被取代工种的我们又该何去何从呢。

2020年是沉重又特殊的一年,这一年发生了太多不寻常的事情,我想这场全世界的疫情会给我们每一个人不同的感受,让我们放慢了脚步,让我们学了会敬畏,学会了审视自己。但是不管怎样,我们还是要着眼未来,用发展的眼光看待2021年,更好的理解人工智能带来的启发。

2017年应该是人工智能最火的一年。智能家居、智能工厂、智能语音等。

我们试想一下如果人工智能用在中国的农业上是怎么样的效果。

美国是一个农业大国,通过视频可以了解到,他们工人在农场作业时用机器取代工人,一般一到三个人就可以管理好一个宠大的农场,在节省人工成本的同时经济收益得到了几百倍的增长。整个农场运作都是程序化的,按程序去操作即可。

如果人工智能用到我们的农业,智能化农业科研、生产、加工、销售于一体,实现全天候,反季节的系统化生产,这样增加了生产规模提高了生产基数,会不会降低普通人的生活购买成本,当然这只是我个人的小小想法,真正实现起来需要一些时间。不过在日本和美国已经有了显著成效。

另外,随着国内人口红利的消失,人工机器人的发展也可以很有效的拉动传统产业,补充劳动缺口。

人工智能会给我们带来什么样的启发呢,随着人工智能的到来,技术也就越来越被重视,参与到学习各种技术的人员会更多。智能设备与人类融合,通过数据会参与到我们的学习、记忆、分析和理解能力,甚至有可能会参与我们最后的判断与决定。

未来10年中,人工智能将会从以下方面改变我们的生活。

1、人工智能将成为更好的个人助理。如苹果手机Siri等 私人助理让很多人养成与设备对话的习惯,减少触碰屏幕的时间。除了提醒功能和进行网络搜索外,私人助理在家居领域也会有一番作为。通过软件语音可以打开或关闭家里的家用电器设备。

2、人工智能将能在危机来临时处理海量信息。

3、机器人将能互相沟通,并制定计划。这个场景可能需要实现的时间会相当长。

4、人工智能将能提前做出医疗预测。

5、无人驾驶汽车将能自行做出判断。现在的无人驾驶很难做出汽车面临一个两难选择的伦理判断,可能需要10年的时间研究。

6、刷脸成为普遍的识别方式,除了刷卡,刷手机,可能在登机、观影、登录邮箱等都可以利用人脸识别系统。

7、智能语音识别。

人工智能技术会对传统行业产生颠覆性影响,在国防、医疗、工业、农业、金融、商业、教育、公共安全等领域取得广泛使用,也将会产生新的业态和商业机会,引发产业结构的变革。

目前国内做得好的人工智能就是人脸识别和网络安全,坐飞机和高铁还有支付的时候,就感觉人脸识别很方便,但是其它方面的人工智能可能因为本人认知有限,并没有太多体会到。

相信不久的将来,人工智能会改变我们的生活,想想互联网红利期带给我们在交通支付购物点餐等生活服务中的众多便利,就更加期待人工智能的早点到来。

人类文明的永恒主题一直是“自由”,制度自由、经济自由、思想自由、空间自由、即便财富的魔力本质依然是自由。希望人工智能的到来,能加速让我们体会到这无限的自由。

· One min read

“ 随着一系列技术上的突破,人工智能在世界科技领域已经渐渐的驶进了高速车道。中国老子有一句名言是:“九层之台,起于累土”。意思就是再高的楼台都是由一筐一筐土堆积而成的,这就特别的强调了基础的重要性.....”

目前越来越多的人都有一个共识那就是:互联网与人工智能在当今世界科技格局中,中国和美国是两国独大。同时,这两个领域又是未来领域。

为什么说是未来领域,互联网的未来趋势已经被时间很好的证明。从1969年美国的阿帕网以来,互联网用了不到50年就彻底颠覆了过去几百年来人们的生活习惯。

在这里我们重要强调的是比互联网年轻许多的人工智能。说到人工智能,首先我们先谈谈什么是人工智能。

百度百科中是这么定义人工智能的:人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

字面的意思有些生涩,事实上,简单来说就是我们把我们的理解和判断,教给机器,让机器代替我们进行判断。

但是我们这里要说的是随着深度学习的不断突破,未来的AI一定会越来越聪明。但是它的出现并不是为了取代人类,而是能让人们极大限度的解放生产力。生产力的巨大提升,会改变未来的生产关系,会改变未来时代。

随着一系列技术上的突破,人工智能在世界科技领域已经渐渐的驶进了高速车道。中国老子有一句名言是:“九层之台,起于累土”。意思就是再高的楼台都是由一筐一筐土堆积而成的,这就特别的强调了基础的重要性。同样,人工智能的发展离不开数据标注,数据标注在人工智能的高速路上,作为底层的基础,成为了众多重要环节之中的重中之重。

为什么说数据标注是人工智能众多重要环节的重中之重呢?这我们得从上篇中,人工智能的定义开始说起。

要想实现人工智能,我们需要把我们人类的理解和判断教给计算机,让计算机拥有我们人类般的识别能力。但是,让计算机如何能识别人类的语言呢?

数据标注就是这样出现了,数据标注就是我们人类用计算机能识别的方法,把需要计算机识别和分辨的图片打上特征,让计算机不断的识别这些特征图片,从而最终实现计算机能够自主识别。

通俗点来讲,比如我们想让计算机知道什么是汽车,那么我们就得在有汽车的图片中,把汽车用专业的标注工具标注出来。这里的被标注软件处理过的汽车就是图片中的特征,计算机通过不断的识别这些特征图片。最终结果就是,计算机通过大量的特征图片的学习,最终能够自主的识别特征物品。

所以说,如果人工智能是一个天赋异禀的孩子,那么数据标注就是它的启蒙老师,在传授的过程中,老师讲的越细致,越有耐心,那么孩子成长的也就越稳健。同样,换个角度,如果说人工智能是一条高速公路,那么数据标注就是高速公路的基石,基石越稳固,质量越过硬,那么就会使用起来就会越放心,越长久。

像马云先生在2018世界人工智能大会上所说一样:蒸汽机释放了人的体力,但是蒸汽机并不是模仿人的体力,汽车比人跑得快,但是汽车并不是模仿人的双腿。

未来的计算会释放人的脑力,但是计算机不是按照人脑一样去思考,计算机机器必须要有自己的方式去思考。

那么如何能让计算机形成一套自主的思考体系呢?这是一个复杂的过程,但是不论是多复杂的架构,数据标注永远是体系中的养分,通过不断的改变标注内容来适应不断强大的计算机。

· One min read

目前AI行业发展火热各大巨头都投入巨资在此领域布局,智能驾驶、人脸识

别以及近段时间正火的AI养猪都是AI技术应用在实际生活上的体现,毫不夸张的说AI

技术正在逐渐改变我们的生活而我们的生活也将因此变得更美好。

AI的发展离不开数据标注的支持,而目前AI行业庞大的数据标注工作都 是通过 哪种模式完成的呢?

一、常见的数据标注平台

由于数据标注的重要性和高质量标注好数据的稀缺性在催生了一大批专职做数据标注团队的同时也催生了一批数据标注平台,比较有名的有百度众测、京东众智、龙猫数据、数据堂等。众所周知百度在互联网大厂是最早开始且投入巨资研Ai 技术的,所以百度众测平台的任务大部分都是百度内部的需求,他们也会接受其他AI公司的数据需求,但是在数据量和价格上会有限制。相比百度而言其他几家数据标注平台就比较亲民一些了,中小型的AI公司的需求一般都会接受。为什么这个地方没有提到大型AI公司呢?那是因为大型AI公司一般都会自建平台且有专门的数据标注团队负责公司的数据需求。

二、数据标注平台的业务模式

(1)众包模式: 现在数据标注通常采取众包的模式,众包模式的优点就是成本较低响应较快。这种模式适用较简单的项目如点点拉框等项目。发布者往往将任务详细介绍和题目一同发送到平台上供广大数据标注兼职人员作答。但众包模式有一个很明显的问题就是质量较难把控,因为众包模式是面向大众的你并不知道在给你做标注的是什么人,他们可能是厨师,是全职太太,是老师每个人对规则的理解不尽相同且不可避免的会有一部分对任务乱答一通影响项目质量。为此各平台也会使用一些方式减少问题的产生提高项目质量。比如增加改判环节一道题在答完之后会由他人进行改判如若判错则不获得任务报酬,此外为防止错判维护答题人员利益还会设置申诉环节使答题人员对有疑问的题目进行申诉。设置标注人员级别,标注人员任务正确率较高答题数较多则能慢慢提高等级解锁更多任务获得更多的任务报酬且有机会进入改判环节成为改判员。 (2)外包模式 外包模式与众包模式相对是将任务外包给专门的数据标注公司和团队,在项目一开始会对项目整体进行评估然后针对项目整体进行报价由数据标注公司自行安排培训安排人手,只需要保证在项目截止日期前保质保量交付数据即可。这种模式的优势就是数据质量和项目周期有保证。但是响应速度较慢成本较高,因为一开始需要安排竞标且平台需要安排专门的项目人员进行项目对接和项目跟进。现如今国内专门做数据标注的团队较多,但是大多数只是以工作室和几十人的小团队为主且业务类型集中在简单的拉框图像标注上。也有一些的较大型的公司如贵州的梦动科技已经形成产业化带动了当地的发展。又或者是“点我科技”他们自建有平台可以自研工具同时担任着数据标注平台和数据标注公司两种角色。 基于以上两种业务模式的答题模式: A模式:A模式指只进行一次答题模式,后续没有改判操作。这种模式应用较少主要用于较简单正确率要求不高的项目。 AC模式:AC模式指在答题完成后会有一个改判流程,改判员只能对题目进行正误的判断不能在答题的基础上进行操作。 ACC模式:ACC模式和AC模式的主要区别是AC模式不能够之前的答题情况作出更改,而ACC可以更改。

三、制约数据标注平台发展的因素

业务模式 一个好的业务模式能不断拔高一个平台的业务上限,上面介绍的两种常见的业务模式(众包模式和外包模式)因为他们都有各自的优缺点,所以单一的使用任何一种业务模式都是不可行的。单存使用众包模式会带来项目质量难以把控,风险高的问题,且众包模式只适合承接比较简单的需求。单一使用外包模式则会造成对数据标注团队的过度依赖,降低整个平台的活力,造成平台现有人力资源的浪费。 对此我们需要两种模式兼用初期需要投入一定的资源建立自已平台的众包团队,这个人数一定要多只有这样才能保证有足够的活跃人数能够完成数据标注任务,同时还要一直有众包任务才能保证这些人一直活跃。众包团队建立起来之后我们就可以将简单的任务通过众包模式发放出去,一些复杂专业性比较高的任务则通过外包模式发放出去即可。

数据标注团队 一个数据标注平台必须要足够的数据标注团队才能承接更多的需求,为了增加平台上入驻的团队数量我们需要提高平台内部的活跃度同时平台上有足够的任务。每个标注团队往往都有擅长的业务类型,我们也需要根据不同团队的特点发放给他们不同的任务。

任务需求 一个平台要想不断发展一定要有足够的任务,增加平台承接的任务则需要提高平台的知名度,提高平台的知名度可以通过广告投放,客户口碑传播,搜索优化等方式。同时还需要一个有力的商务团队。

· One min read

此前对于AI开启的行业赋能,已经被很多次阐释、验证并不断产出成果。

  但对于“AI+”的发展路径、逻辑和未来,在李开复之前还没有人有过如此大道至简式的分析。

  或许跟李开复的履历和现在密不可分。他是80年代的计算机博士,论文成果就是AI领域的研究,是懂AI的科学家。

  他又先后任职微软、谷歌等巨头,完整经历了IT、互联网和移动互联网的演进,是继往开来的产业变迁一线参与者。

  现在AI复兴以来,他创办的投资机构创新工场已投资60家AI公司,其中独角兽就有5家。以及思考着作《AI未来》,在中美都成畅销读物,后又被印成多国语言,周游列国AI。

  所以这一次“AI+”4时代的思考,更是真正全球视野之下的分析。

  参考这个逻辑,或许还能解答另一个问题:

  AI公司如何发展?又会往哪里去?

  原演讲题为《“AI+”时代的到来》,小标题为后添加:

  尊敬的陈市长、王部长,各位嘉宾,今天我要讲的题目是《“AI+”时代的到来》。“互联网+”曾经是一个非常普遍的口号,今天我们要讲的是“AI+”。

  “AI+”是什么意思?我们可以看到在过去的每一波浪潮当中,我刚刚从日内瓦回来,和施瓦布教授(达沃斯世界经济论坛发起人)交流,我们看到的是第四次工业革命在过去的蒸汽机、电气化、信息通信技术和互联网基础上,AI将带来第四次工业革命,AI在各种不同行业都有应用。

  AI演进4浪潮

  在我的书《AI未来》当中,我们描述了四波“AI浪潮”:

  AI是数据驱动,海量的数据是AI成功的要素,所以第一波浪潮一定是互联网数据的这一波。

  第二波浪潮是金融和很多其他的有标准化产品机会的各种领域,所谓的商业智能化,数据仓库。

  第三波浪潮是AI将有眼睛、耳朵还有更多传感器可以听到,感受到人类更多的信息。

  第四波浪潮AI将能够动,有手有脚,有轮子,在制造方面,在机器人方面,在无人驾驶方面将带来很大价值。所以它将重塑各个行业。

  从互联网进入商业,进入实体世界,进入全自动的智能化,我们可以看到,下面的各个领域几乎涵盖了人类社会的所有的商业领域。所以“AI+”就是把AI赋能到这四波浪潮当中的一个机会。

  另外我们学术界朋友谈的一个重要话题就是深度学习是不是走到底了?我们做科研的人是不是该启动新的科研课题?这个答案是肯定的。因为深度学习进入了成熟期,我们在产业界开始使用它,但是在学术界确实需要再发明更多更好的技术。

  这个话题的另外一面在于,虽然说我们在学术界要发明更多更好的技术,取代深度学习的技术,但是这是不可预期的,因为科学发明无法预期什么时候发生。但是非常确定的是在工业界和产业界,我们把深度学习发扬光大还有非常大的机会。

  一个研究告诉我们,AI在传统行业的渗透率只有4%,如果说我们对比前两次巨大的革命,我们今天的AI的普及状态就和当年的“黄页”是一样的。“黄页”大家都知道吧,马云先生的第一次创业就是“中国黄页”,那个时候互联网普及率就只有4%。

  这一方面意味着AI应用还非常少,另一方面意味着,未来发展的机会非常大。虽然我们看到AI在安防等领域有一些落地,但实际上我们只要问周围的企业家朋友,你的公司有没有全面使用AI,我相信96%的回答是“No”。

  “AI+”4阶段

  如果说从我们投资角度来划分AI的四个时代,我认为分为:AI技术时代、AI B2B时代,AI+传统企业时代、以及 AI 无处不在的时代。

  最开始AI是很难的,只掌握在非常优秀的博士手中。慢慢的它越来越好用了,最近在创新工厂我们做了一次培训,仅仅4周的时间,我们招了600个当届的学生,让他们做出了包括无人驾驶、对话机器人等超级应用。这意味着AI门坎在下降,AI技术平台越来越好用,所以AI普及带来了更多工程师,他们可以赋能更多行业,这是驱动的一个重要力量。

  回到四个AI的阶段,我们可以和互联网时代对比。

  我们记得20多年前,互联网貌似是一个黑科技,当时雅虎等都是让人不可想象的技术,这些技术大家非常快的掌握了,我们开始买Web Server等互联网内部服务器的一些软件。

  再下面各个公司就建立了互联网部门,有了互联网专家来帮助公司寻找方向。当时我在微软,我们就建立了一个互联网部门,专门教公司的人怎么切入互联网,但是这个部门很快解散了,因为互联网无处不在。随着技术的普及,一定会从黑科技走向一个无所不在的过程。现在我们正处于第二和第三个阶段中间。

  什么是黑科技时代呢?我非常有幸98年在微软中国研究院(现微软亚洲中国研究院),带了一批我的同事们做了中国最早的AI的科研人员。在2005年,又带了一批非常优秀的工程师做了很多好的AI工作。

  非常有幸,我在黑科技的时代接触到了很多伟大的公司,包括很多在座的朋友们,当时是一个以科研为主,以博士主导,把AI技术作为切入点,再去寻找商业应用的第一个阶段。

  第二个阶段是AI公司开始做2B产品,比如说保险、银行、客服、金融、教育领域能做什么产品,教育产品能卖给学校,金融产品卖给保险公司五世或者银行,包括我们投的第四范式、旷视科技、追一科技、迅策科技等等,他们都是行业的产品的领跑者。

  非常有幸,创新工厂投出了60家AI公司,其中有5家独角兽,未来一年还会有3-4家独角兽诞生。这是第二阶段,把AI做成产品,变成2B的应用。

  第三个阶段,普华永道认为2030年AI将给全世界带来大约100万亿人民币的GDP提升。在中国,我们看到大约是在200万亿人民币左右,其中40万亿左右是AI赋能达到的,远远超过其他国家。

  一方面这是一个巨大的机会,所以要赋能AI的各主要传统行业。但是话说回来了,我们想想今天的AI独角兽,包括我们投的5家,包括今天早上的商汤科技,包括在座的科大讯飞等等的公司,都是很伟大的AI公司,但是这些公司一年就是几十亿的收入,如果说我们在国内要创造50万亿的价值,这绝对不是再去创1万家公司可以带来的。

  这些AI公司会继续创造价值,但是更大的价值一定是要把AI价值赋能传统行业,如果说2030年我们是传统行业是近200万亿规模,我们只要在这个基础提升20%、30%、40%,就可以达到50万亿的规模,50万亿的价值一定是来自于AI赋能传统行业,一定不是来自于黑科技,这是一个巨大的差别。

  AI赋能传统行业三种模式

  AI怎么去赋能传统行业呢?我这里有三种模式。

  第一种是优化赋能,也就是说你的公司的所有的运营一点不变,但是我用AI帮助大数据赚更多钱,省更多钱。

  第二种模式是流程化赋能,也就是说要改改赋能模式,帮你创造更大价值。

  第三种模式是重构颠覆整个产业。

  这里我有六个例子来介绍这三个不同的方式:

  第一个是BPO的例子。

  就是在企业级应用服务当中,我们做了很多外包,简单来说,所有外包给印度的工作都可以外包给AI,现在有一个新技术叫RPA,就是把一个软件放到你的机器上,学你做的事情,过一会儿,10%、20%、30%就不需要人做了,机器就可以做了。

  这个对产业的节省成本是巨大的。我们可以看到的一些BPO的例子,包括在财务、法务、人力资源方面节省重复性的白领劳动,可以节省最多91.2%的成本。

  另外一个例子就是呼叫中心,用语音识别的技术和最新的语音识别加自然语言处理的技术,可以处理80%打来的客服电话,而且它的客户满意度是超过人可以提供的,这是我们投资的追一科技所做到的。

  再讲一下流程的智能化。在零售合作伙伴身上,我们用AI来预测销售,每一个产品在每家商店,每一天可以卖掉多少,它有海量的数据进来,可以做非常精准的预测,降低了它的仓储,对接到它的物流,不但带来了仓储物流节省的钱,人员培训的钱,它的店长都可以AI化,一个公司扩张找店长是非常困难的,店长现在也可以AI化了。

  这队对一些零售类的公司应该是上亿的价值。这个我们就可以明显看到AI赋能传统产业带来的价值是超过一个AI公司本身的。

  再比如说用AI了解传统数据。左边是用AI来做卫星数据,了解地面上农作物的温度和湿度,预测每年的产量和价钱。各种植物等等。右边的例子是更加精确的用太阳的高度和阴影的强度来预算那些储油罐里面有多少油。这些在没有AI的时候是不能做到的,这些只是冰山的一角,后面还有更多的机会。

  下面一个例子就是投资了,我们知道很多投资都是靠人和基金来做的,你去买基金可能有100种选择,1000种选择,但是是千人一面的。而且不是针对你的风险承受能力来定制的。

  未来AI基金会有各种收入,刚刚讲到油的收入、农产品的收入,对每个公司的股票可以做精准的预知。对于每个公司今天的士气,一个分析员是不可能做到的,但是如果说我们可以把社交媒体上,每个人属于每个公司,他今天发出来的社交媒体信息是高兴的还是不高兴的,把这个作为一个员工情绪的指数再输给AI,用AI判断这个股票是应该买还是应该卖呢?

  这个例子我可以讲一千个例子给你,因为一个基金经理决策只是靠几十个,几百个因素,几千个因素,而AI可以用无限的数据,无限的因素,而且针对千人千面做出更高回报的投资。

  美国顶级量化基金有两家,已经达到了600亿美金的规模,已经超过了人的回报。未来这个取代会比人更好,在二级市场股票基金一定会更好,因为它对海量的数据分析能力一定远远超过人。

  最后一个更加神奇的例子,制药。

  今天的制药是靠化学、生物专家去拍脑袋想一些疑难杂症用什么新方法来治疗,未来我们可以用生成化学的方法,再加上AI自然语言处理和对抗网络去寻找哪些可能的药的新分子是可能可以最快通过动物试验和临床试验的。根据我们初步的看法,对一个药的发明可以加快4倍,整个制药行业也被重构了。

  对于一个传统行业,AI赋能价值是巨大的,传统行业面临各种挑战,主要的挑战是AI行业怎么懂AI赋能在哪里,他们怎么去找AI专家?

  这一点我们也有我们了想法,创新工厂和我们的子公司创新奇智现在对8个领域提出解决方案,这些专家怎么介入呢?我们希望扮演的角色不只是VC投资公司,我们希望成为传统企业的首席AI官,我们会进来帮助每个传统企业分析在你各个部门里面,哪一个部门用AI可以产生最大价值。

  我们会把技术卖给你,或者是把技术送给你,连源代码,甚至派人进来,就和传统的咨询顾问一样。咨询顾问按照小时收费,我们不用收费,我们直接进去投资你这个公司,所以我们投黑科技公司,投2B公司,下面我们准备投传统公司,用AI力量来为他们赋能。

  总结

  所以今天我的演讲是分三个重点。

  第一个是AI会影响所有行业,尤其是传统行。

  第二,只有那些拥抱AI的传统行业才能得到最大的增长。

  最后,中国的传统行业某些领域还不是领先世界的,但是反而有可以弯道超车的机会,因为他同时做到IT化、数据化和AI化,这一定会帮我们带来2030年的50万亿的价值。

· One min read

日前,李克强总理在上海考察时对运用人工智能和大数据改善政府服务提出了新要求。准确把握人工智能和大数据的新风口,需要进一步转变思路、创新模式、推动公众参与。

  防范出现“眉毛胡子一把抓”

  实践中,由于工作推进的思路与方法不清晰,不少智能化应用非但没有减少政府部门的工作量,反而给一些主管部门新增了负担。

  例如,在智慧交通项目推进中,技术公司在不懂政府管理关键节点情形下开发的智能化系统,倾向于将城市管“死”。这不仅增加了相关部门的工作负担,而且损害了行政韧性。

  同时,由于智能化管理系统的流程设置问题,当自上而下的压力型行政系统遇到程序化的智能化应用系统之后,原本应该走进社区、走向一线、走入群众的工作在“规范化管理、精准化服务、智能化发现”的程序设计思路中遭到弱化。结果是,政府投入增加了,基层工作人员更忙了,政府服务测评分数反而下降了。

  为此,有必要改善政府部门对人工智能和大数据应用的管理感受度,推动应用场景开发的供给侧改革。

  例如,为解决智慧交通管理有效关键信息抓取少、无用信息抓取多、系统使用效能感不强的问题,政府部门可探索政企合作的供给侧改革模式,将交通管理的关键信息和关键节点重点列出、重点研究、重点解决,以此防范出现“胡子眉毛一把抓”的问题。

  以问题为导向实现系统迭代

  现实中,由于分布式开发机制与自上而下条块体制结合度不够,企业参与城市智能化管理系统开发的获得感往往不足。同时,在条块体制下,下级政府部门的系统往往既要兼容上级条线管理部门,又要兼容本级政府部门,以实现政府系统的互联互通。在多重要求之下,“多方满意方案”的系统性能往往被打折扣。

  要提升企业参与人工智能和大数据应用开发的获得感,有必要创新开发模式,改变现有的整体外包式或分布式开发路径依赖。

  一方面,在城市智能化管理的应用程序开发过程中,应事先明确技术开发标准,定义好可兼容的信息存储格式和数据接口,避免产生不同条块部门反复重建系统的问题。

  另一方面,一级政府部门应以公司化的运作模式建立起自己的技术团队,在初期进行主系统程序招标的基础之上,将政府部门自身的技术团队不断融入主系统的开发和维护之中,从而实现城市智能化管理主系统的稳定与可持续。

  处理好安全、便民、隐私关系

  由于前期缺乏充分论证和公众参与,本应以“安全、便民、高效、公正”为导向的智能化系统,在实际应用中反而给公众带来了新的烦恼。

  要提升公众对于人工智能和大数据应用的感受度,需着力处理好两对关系:

  一是安全与便民的关系。

  城市公共安全固然重要,但智能化管理不能因安全问题而因噎废食,不能为了解决安全问题而将城市“管死”、将公众“圈住”、给居民“添堵”。这就要求在前期应用场景规划中,引入更多的公众参与,考虑到多样化的需求和场景,实现城市智能化管理安全与便民的平衡。

  二是安全与隐私的关系。

  随着社会的现代化,在主要以职业界定身份和社会关系网络的城市社会中,对多元价值的包容成为现代城市文明的主要标志。在不危害社会公共秩序、不影响其他人生活的前提下最大限度地实现自我选择和自我发展,就对个人隐私保护提出了更高要求。为此,城市智能化管理的系统开发应准确划分公共领域和私人领域的范围,做到安全保护与个人隐私、法治与人文关怀的兼顾。

  探索高效管理与透明管理

  总的来看,对焦新风口,推动人工智能和大数据的深度应用,是推动政府管理转型升级的重大机遇。

  首先,人工智能和大数据为高效的城市管理系统建设提供了可能。纵观人类百年城市史,行政系统低效、腐败、管理不善是除外敌入侵之外的最大威胁。智能化管理通过抓取有效信息,有望实现高效管理和透明管理。这是城市治理的一次重大突破。

  其次,在人工智能和大数据应用中,政府代表的公平价值与企业代表的效率价值可以尝试进行融合,进而达成社会治理创新的共识。

  再次,从更长的历史时段来看,治理体系和治理能力现代化最终要建立在命运共同体之上,而人工智能和大数据的应用通过多主体的互融互通,客观上有助于加速这一探索进程。

· One min read

自上海7月份上海开始推行“史上最严垃圾分类措施”以来,垃圾分类成了很多人日常生活的“必修课”。一个月过去,利用新技术、新模式推进垃圾分类的探索不断涌现。 垃圾污染问题并非中国所独有,很多发展中国家都备受困扰。日前,谷歌在一篇博客中透露,为减少印度尼西亚的塑料垃圾,印度尼西亚一家创业公司用上了谷歌的人工智能技术。 据介绍,塑料垃圾是印度尼西亚面临的大难题。这个国家拥有5万公里长的海岸线,而这里又普遍缺乏垃圾处理的公共意识,将很多垃圾倒入大海。 印尼垃圾分类:人工智能派上用场 印度尼西亚创业公司Gringgo就希望借助技术力量应对这个问题。 Gringgo首席技术官兼联合创始人费布里亚迪·普拉塔玛介绍,受印度尼西亚地形地貌影响,为可回收物定价十分困难。印度尼西亚包含17000个岛屿,其中有5个主要岛屿,而绝大多数回收利用设施都位于爪哇岛。这使其他岛屿可回收物的运输成本增加,因此回收价值较低的材料就不再分类,最终以污染环境为代价。 不仅如此,在印度尼西亚,环卫工人的路线和工作安排通常不太规律,而且他们也缺乏相关知识和专业技能来精确辨别哪些物品有回收价值。这些因素对印度尼西亚的垃圾回收率和环卫工人的生计具有很大负面影响。 2017年,Gringgo发布了几款与垃圾处理相关的软件。其中一款软件允许环卫工人追踪回收物的类型和数量,还能向他们推荐更加有规划的路线来节省时间,实现了人工量化回收物品,带来了潜在收入。普拉塔玛介绍,发布这些软件一年内,Gringgo在印尼首个试点村庄将垃圾回收率提升了35%。 今年早些时候,Gringgo被评为“谷歌AI影响力挑战赛”的20个受资助者之一。“我们想到可以创建一个图像识别工具,对不同垃圾进行分类,并判断其价值,进而帮助提升塑料垃圾回收率。”普拉塔玛说。 在谷歌的帮助下,Gringgo正和另一家创业公司合作,使用谷歌的机器学习平台TensorFlow研发图像识别工具。目标是让环卫工人更好地对垃圾进行分析和分类,并量化它们的价值。 有了人工智能的加持,环卫工人将可以为垃圾拍照,通过图像识别判断相关物品及其价值。“这将教育环卫工人了解不同回收物的市场价值,帮助他们优化选择,并将收入最大化。最终将激励环卫工人以更高的效率回收和处理垃圾,并提升回收利用率。”普拉塔玛说。 普拉塔玛介绍,Gringgo的目标是不断优化人工智能模型,使它在经济角度更加可持续,并实现广泛推广应用。 “我们相信,人工智能可以帮助解决我们这个时代最困难的社会和环境问题——比如医疗、灾害预测、环境保护、农业或文化保护。”谷歌AI负责人、资深研究员杰夫·迪恩介绍,谷歌已经启动“用AI造福社会”项目,探索利用机器学习相关研究,对社会、人道主义事业和环境问题产生积极影响。