Skip to main content

· One min read

cilantro是一个精简快速的C ++库,用于处理点云数据,重点是3D案例。它包括各种常见操作的高效实现,提供干净的API并尝试最小化样板代码的数量。该库具有广泛的模板化,可以对任意数值类型和维度(如果适用)的点数据进行操作,并具有更复杂过程的模块化/可扩展设计,同时为最常见的方法提供方便的别名/包装器案例。cilantro可以在我们的技术报告中找到高级描述。

支持的功能

基本操作:

一般尺寸kd树(使用捆绑的nanoflann)

原点云的曲面法线和曲率估计

基于通用维度网格的点云重采样

主成分分析

用于3D点云的基本I / O实用程序(采用PLY格式,使用捆绑的tinyply)和特征矩阵

RGBD图像对与点云转换实用程序配对

凸壳:

从顶点或半空间交叉输入计算(使用捆绑的Qhull)的一般维度凸多面体表示,并允许在各个表示之间轻松切换

通用(一般维度)空间区域的表示,作为实现集合操作的凸多面体的联合

集群:

一般维度k-means聚类,支持nanoflann支持的所有距离度量

基于各种图拉普拉斯类型的光谱聚类(使用捆绑的光谱)

平核均值漂移聚类

基于连通分量的点云分段,支持任意逐点相似度函数

模型估计和点集注册:

RANSAC估计器模板及其实例,用于稳健的平面估计和刚性点云登记

用于点对点和点对面度量(及其组合)的完全通用的迭代最近点实现,支持任意点要素空间中的任意对应搜索方法

可视化:

经典多维尺度(使用捆绑光谱进行特征分解)

功能强大,可扩展且易于使用的3D可视化工具

cilantro,一个用于几何和通用点云数据处理的开源C ++库。该库提供的功能涵盖了低级点云操作,空间推理,各种点云分割方法和通用数据聚类,灵活或局部几何对齐的灵活算法,模型拟合以及强大的可视化工具。为了适应各种工作流程,cilantro几乎完全模板化,其大多数通用算法都在任意数据维度上运行。同时,该库易于使用且具有高度表现力,促进了简洁的编码风格。cilantro经过高度优化,具有最小的外部依赖性,并支持在各种环境中快速开发高性能点云处理软件。

· One min read

2、标注规范 ——共3项(文本、无效、性别)

注: 文本正确率:95% 其它(无效+性别)正确率:95%

注:一定不要多字、漏字!!

2.1

类别分类定义
性别
童声童声指小孩非常稚嫩的声音,大概是在5岁以下的范围。大孩子的声音归到男女。
其他没有人声,或者男女混声的统一规为其他

注:女生之间的对话性别是女,男生同理;只有男女相混的对话是其他

2.2判断是否为无效语音

无效:

1、主体人声音的前面、或后面、或中间:有一段安静或噪声等非人声 ,长度在2秒以上(宽条是0.3秒)。

【注意整句无人声的不是无效】

2、声音是转格式转错的。

无效语音,直接打勾,文本不用修改。

3.全英文的句子听不懂标无效

有效:其它都是有效

2.3修改文本

标注文本,目的是把耳朵听到的“普通话或带口音的普通话”标成普通话文本,严重听不懂的“方言”,可标注#

2.3.1标注#的情况

(1)听不懂、听不清的词或方言标注#

(2)英语语句中,听懂的单词标注出来,听不懂的标注#

(3)除英语外其他国语言标#,发音如“萨瓦迪卡”,“阿尼哈塞呦”等必须标#

(4)粤语标注#

(5)噪音标注#

(6)遇到拼音标注#,如“阿啵呲嘚”等拼音

(7)整句无人声,只有噪音,不超过2S的标#,如一个人整句咳嗽声

注:

#可以代表一个字不清楚或者几个字不清楚;

一句话中可以出现最多两个#,但不能 同时 ## 这种形式出现;

最多可以 #文本# 这种形式出现;

2.3.2姓名问题

(1)姓:必须标注正确,确定是有这个姓

(2)名字:名字可以打同音字

2.3.3地名问题

(1)省市等较大地名必须查清楚,不能出现错字:如浙江省无锡宜兴市

(2)较小的地名,如村镇以及道路、小区等可标注同音字。

2.3.4数字问题

(1)听到的阿拉伯数字写成汉字,如“一二三四五”或“幺二三四五”

2.3.5儿化音问题

(1)带儿话音的,可以写出“(儿)”字,并且加括号;或者直接不打儿化音,皆可。 例如:我得了5分儿,文本要写成:我得了五分(儿)/我得了五分

注意:不是儿化的不用加,如女儿,婴儿等不是儿话,就不能加在“儿”字上加括号。

2.3.6语气词问题

(1)注意口语的字:口语中,结结巴巴说出的,要写出对应接接巴巴声音的字。

(2)口语中,“嗯”、“哦”、“啊””等,要准确对应文本。例:声音“呀”,不能写成:“啊”

2.3.7英语相关问题

(1)单词:英语单词,整个单词要小写。如“happy”

(2)字母:说字母的写成字母,要写成大写。如“A B C ”。注意:QQ、MSN,是字母发音,要写成大写。

注:英文单词发的不标准,如能听出是哪个单词,就写单词。

整句都是英文句子的情况:

l 一句话中发音不清楚的单词,标#,发音清楚的单词必须写出单词 l 整句英文都听不清楚时,标为无效,不要整句标为#。 l 英文用中文谐音写出来的,算错。如:black 写成 布莱克 算错 l 一些地名,人名按英文读的,需要写英文,如:I am gonging to shanghai 不能写成“上海” l 其他国语言,发音如“萨瓦迪卡”,“阿尼哈塞呦”等必须标#

2.3.8混音问题

混音包括3类:

1、当前电话通话的两个人同时说话,相混

2、当前人声与较亮或尖锐的音乐声(如铃声、汽车喇叭)相混

混音部分的标注方法:

(1)如果非主体人插话不影响对主体人说话的理解,标注员可以听出主体人说话的字,则要求写字。(不要出现一个音对应两个字)

例如:非主体人插入的话,音量小、字数少,可忽略当成没听见。

(2)如果非主体人插话,造成标注员已听不出主体人混音部分的字,则要求混音部分标#。

例如:非主体人插入的话,由于音量过大相混在一起,听不清主体的话,混的部分写#。

(3)如果音乐声相混,不影响对主体人说话的理解,标注员可以听出主体人说话的字,则要求写字。

如果音乐声相混,造成标注员已听不出主体人混音部分的字,则要求混音部分标#。

3:增加#的情况

l 人声中出现突然间的大噪音且与人声不相混,包括铃声、叮声、咳嗽、扑话筒、有大的音乐背景等,写1个#。 l 人声前边或后面出现一片乱乱的小声说话、持续的背景噪音,写#和不写#都可以。 注意:安静的静音处,不能写#。

2.3.9 标注页面蓝条与黄条使用

蓝条和黄条的功能有3个:

(1)尺子,表示0.3秒,可以用于量取2秒判断无效。 (2)选中功能。选中的是播放蓝条最左端到黄条最右端的声音。当语速特别快时,建议分段选中去听,写下文本,正确率会提高。 (3)确定#在哪儿出现。

标准普通话与带口音的普通话对照表:

类别

定义

特例

举例说明

无口音

拼音、声调都正确

轻口音

拼音对,声调不对

n和l不分;

n和ng不分;

z/c/s和zh/ch/sh不分

属于轻口音

那个,发音:la4 ge5(标准na4 ge5 )

电信,发音:dian4 xing4(标准dian4 xin4)

平时,发音:pin2 shi2(标准ping2 shi2)

政治,发音:zeng4 zi4(标准zheng4 zhi4)

刚才,发音:gang1 chai2(标准gang1 cai2)

重口音

拼音不对

(n和l不分;n和ng不分;z/c/s和zh/ch/sh不分)除外

湖南,发音是 fu2 nan2(标准hu2 nan2)

歌曲,发音是guo1 qu3(标准ge1 qu3)

· One min read

数据标注就是使用自动化的工具从互联网上抓取、收集数据包括文本、图片、语音等等,然后对抓取的数据进行整理与标注。数据标注与审核行业上游为计算机软硬件生产商及人力资源行业,下游主要是安放、自动驾驶等人工智能领域。

数据标注与审核行业产业链示意图 图片

资料来源:智研咨询整理

智研发布的《2019-2025年中国数据标注与审核行业市场专项分析研究及投资前景预测报告》显示:近几年,数据标注与审核行业快速发展,2018年市场规模已达到52.55亿元,至少在未来的5年内,数据标注行业的增长空间还很大,数据标注的市场才刚打开,数据需求将紧随人工智能的大规模落地引来一波爆发式增长。

2015-2018年数据标注与审核行业市场规模及增速情况

图片

资料来源:智研咨询整理

近几年,随着国内人工智能行业的飞速发展,数据标注与审核行业产值快速增长,从2015年的5.85亿元增长到2018年的54.02亿元,近几年我国数据标注与审核行业产值情况如下图所示:

2015-2018年中国数据标注与审核行业产值情况

图片

资料来源:智研咨询整理

2018年我国数据标注与审核行业规模达到52.55亿元。其中,有三分之一是AI公司内部的标注部门消化,另外三分之一被商务流程外包公司瓜分,剩下的34%左右业务量流向专门做数据采标的第三方公司。

2018年我国数据标注与审核行业分布格局

图片

资料来源:智研咨询整理

2018年我国部分地区数据标注与审核行业优势企业一览

产品名称所属公司所在地区简介
荟萃上海丁火智能科技有限公司上海(华东)丁火智能是一家人工数据标注服务提供商,通过“移动众包执行+全职员工全检”模式,为企业提供数据采集和标注服务,“移动众包”用于降低成本提高效率,“全职员工”用于保证交付数据质量,提供的服务包括图片、文本、语音和视频的采集和标注。
龙猫数据北京安捷智合科技有限公司北京(华北)龙猫数据是一家专业的人工智能数据服务提供商,致力于提供人工智能大数据采集、数据标注、数据提取、数据校验、数据清洗、线上众包等服务,服务领域涵盖图像、语音、文本、视频四个方面。
爱数智慧北京爱数智慧科技有限公司北京(华北)爱数智慧——专业的AI人工智能数据服务提供商。致力于提供智能语音、图像、文本数据的采集、清洗、标注、校验等服务,为深度学习提供训练语料。
视在科技杭州视在科技有限公司上浙江(华东)视在科技是一家基于视觉行为分析的运营服务公司。公司通过VAI技术实现数据自动标注化、结构化等行为算法,将大数据显像化并提供行业解决方案和AI算法,进而形成闭环商业链。
泛函科技北京泛函科技有限公司北京(华北)泛函科技是一家以技术为核心,专注于各类语音、图像采集及数据处理科技公司,可承接全世界30+类语言语音及图像文件的标注和清洗工作。拥有覆盖全球36个国家和地区的采集和标注资源,致力于为客户提供一站式训练集数据定制服务
锦翰科技锦翰科技(深圳)有限公司广东(华南)一家位置数据服务提供商,致力于利用地图、定位和大数据分析技术为传统的建筑物运营管理者提供数字化的运营、管理、营销的位置服务解决方案,同时为消费者提供基于位置的崭新服务。
BasicFinder平台北京深度搜索科技有限公司北京(华北)深度搜索科技是一家图像识别与深度学习技术研发商,公司的主要业务包括提供大数据标注、人工智能技术咨询与提供相应的技术解决方案、智能系统企业定制和智能生活平台化产品等多项服务。
星尘数据北京星尘纪元智能科技有限公司北京(华北)星尘数据是一家为专为人工智能研发机构服务的数据众包平台。我们提供训练模型过程中所需要的人力来帮助解决数据的采集、标定、质量监控等工作,使企业能够专注于自己的核心业务。星辰数据的团队成员均来自于世界一流的知名企业,有着多年机器学习的经验和对数据标注服务的深入理解。我们结合了谷歌、百度等世界顶尖人工智能公司的标注系统,轻松、快捷地解决您的所需标注任务。
霓螺霓螺(宁波)信息技术有限公司浙江(华东)霓螺是一家图像视频扫描与识别技术服务企业,包括物体检测,将对上传的视频进行快速扫描探测并识别出人、车、物。推荐视频中NILO标签标注点;图像识别,对物体图像进行搜索,建立视频内标记NILO标签的物体与数据库中信息的关联关系;以及运动跟踪,所有的NILO标签都可以自动跟踪物体的运动轨迹。

图片

资料来源:智研咨询整理

2015年,我国数据标注与审核人工智能企业部门规模为2.36亿元,人工智能外包公司规模为1.85亿元,第三方数据标注与审核公司规模为1.41亿元。2018年,我国数据标注与审核人工智能企业部门规模为17.34亿元,较上一年相比增长了61.60%,人工智能外包公司规模为17.34亿元,较上一年相比增长了66.41%,第三方数据标注与审核公司规模为17.87亿元,较上一年相比增长了88.11%。

2015-2018年中国数据标注与审核应用市场需求特征

· One min read

谷歌AI团队近日推出了一款新型图像标注方式——“流体标注”,即采用机器学习来注释分类标签并勾勒出图片中的每个对象和背景区域。谷歌官方表示其可将标记数据集的速度提高三倍。

百度众测平台去年曾发布了5000万元的数据标注任务,而今年预计将达3亿元。面对如此大的市场需求,效率低、交付质量参差不齐的人工标注方式亟待改善。谷歌此次推出的“流体标注”如何为图像标注提速?

数据标注——机器感知世界的起点

“数据标注是人工智能产业的基础,是机器感知现实世界的起点。从某种程度上来说,没有经过标注的数据就是无用数据。”美国加州科技大学校长秦志刚教授在接受科技日报记者采访时表示,机器识别事物主要通过物体的一些特征。被识别的物体还需要通过数据标注才能让机器知道这个物体是什么。

图片

在机器的世界里,图像与语音、视频等一样,是数据的一个种类。近年来,随着数码产品以及存储技术的迅速普及和发展,人们每天都可通过相机、可视电话、监控及医疗设备等制造大量图像。因此,现阶段图像已然成为标注产业发展的重点对象。

如果素材是一张人物图像,那么需要标注的信息往往是性别、面部朝向、人种、有无帽子眼镜等,也可以人为地将人物和背景的区域划分开来。将成千上万张经过标注的图片组成的数据集“投喂”给机器,它才能在一张全新的图像中分辨出人物在哪个区域、具有怎样的外貌特征。对于人来说“小儿科”的思考历程,机器却需要大量的标记数据集进行训练。

机器学习——缓解人工标注的压力

提到人工智能产业,人们往往联想到繁华的城市和干练的IT精英,但实际上,支撑起人工智能的数据标注产业,却是一个劳动密集型产业。百度搜索“数据标注”,会出现很多图片语音视频数据采集、标注公司。随机选择一个此类词条点进去,往往会看到“万人数据标注团队”等类似宣传语。可见人工标注是目前数据标注的主要方式。

“谷歌推出的流体标注模型主要利用人工智能学习的基础,对图像数据进行自动标注,对于标注不准确或者出现偏差的地方可以通过人工调整,从而提高标注效率。”秦志刚指出,即便该模型可借助机器学习提升标注速度,但最初还需进行人为地数据标注,为其提供初始训练数据集。事实也正是如此,为了标注图片,谷歌预先以约一千张具有分类标签和信任分数的图片训练了语意分割模型。

但该模型尚不完美,谷歌称,物体边界标记问题、界面操作速度以及类别扩展等仍需进一步研究或完善。

人工智能——致力于生活中的简单应用

虽然还有诸多难题尚待攻克,但以流体标注模型为代表的数据标注新方式无疑顺应着人工智能的大潮流。实际上,自人工智能逐渐走热以来,很多行业都想搭上这个热潮。然而,在灼热的潮流背后,掩藏着一个根本性的问题:人工智能终将走向何方?

“人工智能的本质是机器拥有‘学习’的能力,可想而知,人工智能可以极度缩短人类自身的学习时间,从而将人从大规模脑力学习活动中解放出来,去专注于更有价值的工作。”秦志刚表示,虽然人们普遍认为人工智能终将到来,但现阶段人工智能产业仍在云端。目前大多数人工智能的应用只能生存在高性能处理器的大型厂房中,就如同第一代通用计算机ENIAC一样“大而笨重”。“众所周知,随后的几十年内计算机飞速发展到小型的笔记本电脑,功能却比ENIAC更强大。人工智能也当如此”。

界面简单、功能友好、毫无相关知识基础的人都能使用并获得舒适感,这是秦志刚设想的人工智能时代。一枚小小的人工智能芯片,可以完成学习、训练、推理等一系列“思考”过程,而它的终端表现则或许只是人们生活中最为常见的简单应用。如下班回家,不需再拿出钥匙开门,智能门锁就像一位尽职的管家,会在第一时间感知你的到来,为你敞开家门。“十年之后,人工智能将会成为主流,潜移默化渗透到生活中的各种角落。别看是小事情,背后却是高密集的技术支撑。”秦志刚表示。

“愿景十分美好,但如何将人工智能落地和普及推广?这将是我们下一步亟待攻克的难题。”秦志刚说。

· One min read

教育行业内已经普遍认可“人工智能+教育”的重要性了,但当我们在大谈特谈 AI 如何重构教育时,它又会面临哪些真正的挑战?

7月13日,新东方 AI 研究院院长瞿炜来到 2019 钛媒体 T-EDGE 科技生活节谈了谈他的看法。

作为一家创立已经26年的老牌教育巨头,新东方积极拥抱新技术。在瞿炜看来,未来 AI 大势不可阻挡,“AI +教育”是新东方承担历史责任,必须要全力以赴。

在 AI 浪潮席卷各个产业的大背景下,去年,新东方教育科技集团成立了 AI 研究院。据瞿炜介绍,新东方 AI +教育的作战地图,主要从从教、学、考、评、测、练等维度进行,结合线上和线下的混合学习、学科维度等场景落地。

不过,就在他们这一年间快速落地“AI +教育”的时候,也发现了许多意想不到的挑战。这些挑战体现在语音识别、人脸识别、文字识别、自然语言处理,以及 AR 与 VR,几乎涵盖“AI +教育”的所有场景范畴。

就在行业热捧“AI 教师”的趋势下,瞿炜提出了一个值得注意的观察,他们通过研究市场上所有做 AI 教师直播课的产品,得出一个规律,无论产品模拟真人多么逼真,在8分钟之类,基本上学生都能发现 AI 教师是一个假人。

而在谈论 AI 变革行业,在具体落地场景时,我们也应当明确,行业也在发生变革与分化,不同行业的 AI 有截然不同的一套理论、算法和系统。(本文首发钛媒体,作者/李程程)

以下是新东方AI研究院院长瞿炜在2019 钛媒体 T-EDGE 科技生活节的演讲全文,经钛媒体编辑:

大家好,非常高兴今天受钛媒体邀请参加分享,刚才也听到了非常振奋人心的消息,今天是一个好日子,祝贺赵总今天融资1个亿。

这个时代科技和AI,某种程度上成为科技会议代名词,作为一个做AI做了20年的学者,我想分享一点我们不同的看法。我今天的题目既和教育相关也和AI相关,但是稍微不一样的是,到底谁在变革谁?

先介绍一下新东方,大家对新东方很熟悉了,不太一样的是,我们最新的数字大家未必很清楚。新东方除了英语学习很有名,其实在中小学全科教育,在中国也帮助了很多的孩子。新东方现在有1200个校区,5万间教室,6万名老师,去年班教超过1000万名学生。

当我们谈论AI+教育的时候,意味着有海量的数据,同时还拥有中国乃至世界上最全的教育场景,从3到30岁几乎全覆盖。

新东方在去年成立了新东方AI研究院,就是NAIR。新东方有26年的历史,这是非常年轻的团队,在新东方里是很新的团队,我们希望这支全新的团队能够跑得最快。

未来AI大势不可阻挡,AI+教育是新东方承担历史责任,我们要全力以赴。我们希望有更多的才俊投入到“AI+教育”造福全世界事业当中。

借着新东方平台,把AI+教育系统、产品快速实现大规模应用,不仅是一个创业的团队,我们更希望能够和现有业务紧密结合,和外面公司相比落地能力和技术更快。同时,我们进行商业模式创新;和投资伙伴一起构建AI+教育生态和跨领域合作。

简单谈一下AI变革教育,我们认为教育AI作战地图,新东方怎么做呢?我们从教、学、考、评、测、练等维度,同时也从AI技术维度、场景维度,无论是线上线下混合学习、学科维度共享这样一个作战地图。

举几个小小的例子,也是我们在过去一年快速落地的场景。

案例一,透明课堂。传统课堂是一个黑盒子,大家上过学也感同身受,教学质量更多时候靠老师的自觉和随机抽查而已,是一个很传统行业。当AI来了以后,一切发生巨大的变化,我们称之为“AI深度感知平台”,这个项目在新东方快速落地了,推出了一个边缘计算设备,称之为小N引擎。

第一个落地的项目在做“管”的层面,推出了“小n督课”,在很多城市、新东方几百个小区规模化的试点。今年新东方决定投资1个多亿,在新东方所有校区、所有教室落实督课,未来的新东方不光老师好,什么才叫老师好,AI告诉你。

案例二,教育在如何变革AI。大家可能很少听到,但是作为在一线实战的,深刻体会到如今的AI不光是大家耳熟能详变革这个、变革那个,当AI和传统行业结合的时候,通用化的AI已经不够了。

举几个例子,大家听过我的演讲大家感受到了,比方说我们进入教育的行业,我们会发现传统AI尽管在很多通用场景,但也面临很多挑战。

语音识别的挑战。比方说我在这里演讲,如果没有科大讯飞、微软百度引擎做语音识别,如果接入从麦克风接入的话,准确率达到99%是没有问题的,但是如果识音器在距离我20米之外,如果还有一定噪音的话,识别率直线下降的。但是在真实实战场景理想状态不存在,语音识别面临很多问题。

人脸识别的挑战。也是一样的,我们试图做行为分析,但新东方不做监控学生的事情,我们做的是提高教学质量,做的是有温度的AI,即使你这样做的时候,你会发现特别有挑战。你希望低成本,用最快的速度把AI的产品技术惠及更多的人,意味着更大挑战。你用最普通的摄像头做这件事情的时候你会发现,无论是超低分辨率、强大即便角度、遮挡下的人脸,这远比无人驾驶更现实的问题。

文字识别的挑战。OCR技术作为一个极其传统的技术,因为每个人手机几乎都用手指识别,进入教育行业大家发现如此挑战,你试图用一个手写板解决所有问题,不现实。因为你改变不了学生使用习惯,相当长一段时间之内还是会接受纸质板。如何线上线下结合,解决文字问题就会难倒一众教育公司。

自然语言处理的挑战。如果一个聊天场合,机器人不知道怎么办的时候可以闲聊,可是教育不是。当你教一个学生的时候,学生希望在最短的时间里知道准确答案。这个挑战我认为可能在一众的英文行业里面是最大的。

AR/VR的挑战。可实时交互的AI老师,从去年开始,如何用一个模型让你看不出它是一个假的人,逼真度要做到绝对逼真,有非常多的问题,除了图像上的问题,还有声音上的问题。我们做了一个实验,把市场上所有做AI直播做了一个测试,有一个规律发现,很少能挺过8分钟,8分钟之内基本上一个孩子能够发现这是一个假人,这对于AI+教育这件事来说是一个巨大挑战——如何挺过8分钟乃至于80分钟?

机器学习的挑战。大家普遍接受这个词了,过去5年大家对它不是很熟悉,被热炒一番以后。实际上机器学习才刚刚开始,现在AI是一个两三岁的孩子,我们做这行人来讲,连两三岁都不到。人从猿进化而来的,但是不能说人就是猿。大家总会去讲AI能够变革这个、变革那个,但是实际上从做AI的人来讲,当AI和教育结合的时候,AI不仅变革传统行业,真正落地的话,行业也在变革分化,不同行业的AI有截然不一样的理论、算法和系统。

我们重构教育AI能力体系,所有这些技术都是打引号的。联合行业内顶级合作伙伴一起做这件事情,这件事情难度非常大,实际上刚刚开始。不光要靠像新东方这样既有数据、又有场景同时有众多资源公司、行业龙头企业去做,同时需要最顶级研究机构加入,我们在进行深度合作,实际上是很开放的。给大家做一个小小的广告,如果有意愿从事AI+教育领域,无论是创业还是投资的朋友们,包括各个产业链条上的朋友们,如果愿意去投资AI+教育的未来的话,新东方绝对是你最好的合作伙伴。

最后一句话,“携手一起努力,让AI在教育领域落地开花”。

· One min read

教育的本质是为了培养未来的人才。人工智能社会即将到来,我们如何应对?

7月13日上午,编程猫联合创始人、CEO李天驰来到2019 钛媒体 T-EDGE 科技生活节,他认为,未来30年是人工智能推动的社会,会带动新的人才的需求。人工智能切到教育的细分教育场景的要素是编程,这会倒逼编程教育作为学科教育的发展。

经过四年的探索,李天驰发现,我们很早就谈计算机要从娃娃抓起,但效果并不尽如人意,核心就是缺乏合适的工具。其次,现在的编程课程的设置大多不是基于孩子的现年龄段的知识储备而设计。同时,因为编程教育的发展时间较短,相关师资人才匮乏。

“有些工夫省不了的,教育本质上像传统农耕业,你必须仔细照顾这些幼苗,仔细为他们除草、施肥、耕作才会发芽。”李天驰说。

好工具、好课程和好教师是才是关键。因此,我们要开发出更适合少儿使用的编程工具,根据不同年龄阶段的特点来设置课程,让编程教师有更多机会得到更好的收入,这样才能从根本上促进编程教育的发展。(本文首发钛媒体,作者/李程程)

以下是编程猫联合创始&CEO李天驰在2019 钛媒体 T-EDGE 科技生活节演讲全文,经钛媒体编辑:

大家好,很高兴来到钛媒体峰会。我在小学二年级学习编程,后面做计算机相关学习和研究,等到2015年,世界范围内少儿编程这个趋势非常好,回到中国来做,创办编程猫,一共四年,累计下来编程猫上面有一千多万学生学习编程,进到一万多所学校里,今天通过编程教育我们也连续八个季度收入翻番,预计下半年实现盈利。

那么编程给我们孩子带来什么样的未来呢?先从几个小故事跟大家做分享。

第一个是家在南方孩子叫丙南。之前有一个非常著名的媒体给他做采访,为什么采访他呢?一开始,他们采访编程猫的时候问我们,你们的孩子都是哪里的孩子,是不是家庭背景高大上?我说,分布非常不均匀,怎么样的背景都有,比如说丙南,家里是小区楼下小卖部,是一个旧货店,家里卖货的时候有一个小电脑,他用那个小电脑完成编程学习。

2017年的时候,他的妈妈不是很理解,他举例说编程以后会像普通话一样的普遍,这是他们的理解。

第二个故事是一个深圳小朋友——王蓉。她2016年开始学习编程,是五年级的学生,今天初一了。前不久,她妈妈特别开心跟我分享他孩子的变化,因为我们看到他在论坛上发布的贴子,跟我们平台上其他小朋友一起做一些探讨。

这个孩子因为学习编程开始自己探索数学问题,因为他在研究一些课题的时候受到了阻碍,因为编程不仅仅是编程本身,也需要做课题的时候,需要很多其他学科知识,他自己花了一年的时间来去学习各种各样的知识,然后在知识帮助下完成AI学习的作品。

在学习过程当中,他妈妈为什么找我聊天呢?特别有意思,在整个过程当中他没有参与其他任何补课,但是在这样过程里面通过自己的探索,在深圳名校里面,从年级中等的学生变成了年级前十的学生,这是他自己学习变成的变化。

第三个故事是一位佛山的老师,后来他去到四川大凉山支教,写了他自己在支教过程当中的感想,我们把编程教材寄到大凉山的时候,他发给孩子,教大凉山的孩子学编程的场景。这个老师说,他选用编程猫作为教学工具原因是什么,以及在教学过程当中遇到什么困难和喜悦跟我们进行分享。

这三个故事在不同时间节点发生,2015年到2019年,很多人重视编程教育,为什么它会越来越被重视呢?大家从政策上已经看见。我们出台各种各样的政策。原来教育部通过29项比赛,更多以学科为主,但是到今年,这29项比赛里面几乎1/3跟科技创新、编程类相关。

我一直认为,教育本质是为了培养未来的人才,教育跟国家未来紧密相关,也是跟社会未来紧密相关的,教育要培养什么样的人才呢?过去30年和未来30年社会在发生什么样的变化?

过去20、30年间,整个社会推动力量主要是互联网的变化,从互联网的兴起、带宽从有线变成无线,变成2G、3G、4G到今天的5G,互联网和移动互联网构成社会发展推动重要力量。从2020年到2030年、2040年我们社会经历新一轮技术对社会的推动,就是人工智能。

社会由人工智能推动产生,因为人工智能技术发展会逐步推动社会发展,所以社会对新的人才产生新的需求。人工智能为什么倒逼编程这样一个学科发展?

我们自己在内部举例的时候经常拿另一个学科举例,就是英语。从1978年改革开放以后,2001年加入WTO一直到现在,经济全球化是过去那个时代生产力发展最重要的因素,经济全球化带来了对全球化人才的需求,人才化的需求带来了教育改革,教育改革不断深化从大学到中学到小学,我们看见英语作为一个学科不断从高往低渗透到现在到幼儿园。

还有很多人问我,为什么人工智能人才倒推在编程里,为什么不让小孩子进行机器学习,学习人工智能相关的知识?除了不一定学会以外,经济全球化以后,带来并不是这些孩子就要学全球化的这个学科,全球化的人才是一个很笼统的概念,切分到教育的里边,你会看到全球化基础要素工具是什么?是英语,走进教育是英语,而不是全球市场,或者说全球化商务这种学科。

人工智能也是一样,它切分在教育垂直场景里面,要素是什么?是编程。我们在大学里面有这些动作,增设了人工智能学院,开了很多大数据专业。在中小学从去年开始密集有政策出来,开设编程课程,我们自己也参与在其中,我们进去非常多的学校,跟部里和各省厅有相关合作,在各地开展信息技术和编程教材。

如果社会上对人才有需求的话,我们的孩子需要什么样的编程教育呢?这四年来的探索总结三点:好工具、好课程、好老师。编程在计算机基础上发展,计算机从机器语言到汇编语言到高级语言到今天,我们国家从80年代有计算机普及的推广,邓小平说过计算机要从娃娃抓起,从2017年以前回顾的话,你会发现为什么效果不好,核心就是缺乏合适的工具。

因为孩子学习和成人学习不一样,第一有足够趣味性,第二以孩子思维培养为基础。编程猫做了Kitten个硬化工具,为什么更适合孩子呢?在这里面除了非常易用以外,功能非常多也很强大,它只要搭一些积木可以做一些神经网络训练的东西,包括像云计算等等东西。它的功能会更好。

Kitten和其他工具相比的话,它在跟真正C语言、Python底层上是连通的,我们做它的方式和其他的工具,有一些不太一样的实现方式,本质上在高级语言上面做一层封装。所以,在学习过程里面从一个三岁的孩子学高度封装化图形方式,到中小学阶段从Kitten完成中小学学习,其实这里面是无缝连接,成体系是最重要的。

什么是好课程?大部分孩子在上编程课,有很多实际上都不是非常好的设置。现在很多人在做编程课程是什么样的?在设计的时候我们叫面团设计,设计的课程的时候用户就是一个面团,你想捏成什么样就捏成什么样,有时候课程为一个七岁孩子设计的,有时候变成高一的孩子,当应用在教学里面及其难教,对于孩子来说怎么学都学不明白。

如果这个课程为一个中学孩子设计的,一定会把乘法、除法考虑在里面,默认已经懂,小数点、百分比都不是问题,这个时候你做的课例难度已经在那里了,7岁的孩子怎么明白呢?你把坐标改成7.9和-1、-2,不同年龄不同认知特点的孩子要求课程不一样。

现在大部分机构也好还有一些人员也好是凭着自己的想法去根据面团一样的用户去设计这个课程,对于用户来说是非常不友好的,而且对于孩子来说是在浪费时间。必须根据孩子不同年龄特点设计不同的课程。

为什么大家不这么干呢?大家知道,依据不同的特点去设计不同的课程只有一个结果,课程量会大大增加,设计人员、课程体系要求会大大增加,而且是平方级的增加,为什么做矩阵式的课程呢?有些工夫省不了的,教育本质上像传统农耕业,你必须仔细照顾这些幼苗,仔细为他们除草、施肥、耕作才会发芽。编程课必须分年级,如果不分年级会发生为面团设计课程的事情,这对用户来说是极大的浪费时间。拥有这样认知特点的孩子,就应该匹配这样认知特点的课时,这是我们的观念。

现在很多人在研究编程课程的时候,我们觉得在严谨性上还是有一些欠缺。编程课的研发必须是严谨和科学的,现在很像我家小孩病了,我旁边没有什么好的医生,更好我认识我家旁边有一个孩子,刚刚学完兽医毕业,我让他给我这个孩子看看,就像这样一个情况。

因为编程教育的发展历史非常短,所以相关人才匮乏,大部分人做这个事情的时候凭拍脑袋,凭自己的想法,向中医开一些处方一样未必有良好的依据,这是我们自己做的尝试。希望通过自己的举措带动业界的进步,把这个课程落到学校里面,让更多的相关专业老师、学生、领导全方面来进行课程的科学性的论证。

另外一个点,倒不是必备项目,一个好的课程对于孩子本身来说会有一个比较好的发展,编程课程最好学科融合,能够跟数学、语文、英语有一些关联,在你设计课例的时候,让这个孩子不仅仅在编程垂直领域去做,你在做项目的时候用编程知识解决生活问题,本质上编程教育解决问题的能力。

比如说,让他用爬虫处理一下看看古代诗人互相之间的关系是什么,了解一下各个诗歌之间互相引用对方名字的频次……包括像数学方面的结合更多了,做出英语的单词听写器,每次自己在家完成听写作业,不用家长帮助孩子解决作业的问题。

我们觉得学科融合是一个特别好的概念,我们也把它引入到我们课程里面去。

对于编程教育来说,什么是好老师,这里有一个误区,程序员是不是适合教孩子编程?因为程序员自己编程水平会好,但是他对儿童发展、对于孩子的教育实际上有他自己一定缺陷在这里。

我曾经教过一个孩子,他爸爸是一个很厉害的程序员,他问我说,你一直让这个孩子把这个角色在这里重复动,不考虑内存回收问题吗?这个习惯培养这么不好,将来怎么办。

其实,你从孩子本身的特点来说,7、8岁的时候未必就是需要考虑那么周全,它的逻辑还没有到那个地步,所以编程老师有一个难点,既要懂编程和计算机科学,又要懂教育和儿童发展心理学。这样的老师怎么来呢?我们自己总结,一方面你需要有梦想和情怀改变这个世界,带给下一代有意义的事情,另外一方面必须匹配很好的收入,否则他们去阿里和腾讯了。

我们经常开玩笑,一流的程序员可能当程序员,二流程序员都当产品经理,当不了产品经理才能考虑教育,总是三流肯定不好。一定有很好的收入去匹配,很好的收入背后是什么呢?编程教育要由什么样的老师,由编程教育商业闭环决定的,好的商业闭环带给好的老师,不好的商业闭环下机构的老师肯定不会太好,因为上限在这里,好的人往其他行业溢出。

往外说是AI教学系统,实际上是人机交互教学系统。我们认为一对一的模式,或者其他的模式是不能带给老师很好的收入,必须用技术让老师提效,让收益增加才有可能。到今天为止看到,一个好的老师在一个月拿到5、6万的收入,在这个前提下才会有好的老师和人才愿意往这个行业里面来,好的商业模式支撑老师创造的收入是合理的,支撑企业正常发展,从500个老师到1000个老师,到2000个老师和1万个老师是没有办法负载的。

很多人问我,你们为什么搞这套东西,我们想给老师创造更高收入,让更好的人才进入到这个行业里面来,真正意义上解决好老师的问题。这是我们那套系统的视频,在重庆8所学校许老师拍的。这是在课堂里面50多个学生上着50多个种进度课程的案例,这是一个课程在脱离老师以后进入到公益校的尝试。和很多高校合作培养编程教育的人才。

· One min read

曾经,机器人的出现改变了整个制造业经济领域。如今,人工智能和自动化以同样的方式颠覆着信息工作,人类开始逐渐将认知劳动交付给计算机。

例如,在新闻业中,数据挖掘系统会提醒记者编辑们注意潜在的新闻选题,而新闻机构则为观众提供了获取信息的新方法。自动报道机制如今已可以覆盖财经、体育等品类的新闻。

当这些智能技术渗透到各行各业中时,人们通常会好奇传统工种和劳动力将受到怎样的冲击。本期全媒派带来独家编译,看看在人工智能加入的新闻业中,做新闻的会是谁?他,或者说它们,又会怎么做新闻?

强化而非替代

西北大学助理教授及计算机新闻实验室总监Nicholas Diakopoulos在其最新著作《自动新世界:算法如何改写媒体》中通过一系列论证表明,即使在人工智能主导的未来,仍然会存在很多人类新闻工作者。但是,这些人的工作,角色以及工作内容都会有所改变。人力将与算法结合,以释放人工智能的能力,同时适应其局限性。

据估计,以目前的人工智能技术水平,记者的工作中只有约15%可以实现自动化,编辑则只有区区9%。

在好莱坞大片以外的真实世界中,人类仍然在几个新闻业关键领域对人工智能保持优势,包括复杂沟通,专业思考,适应性,以及创造力。

报道,倾听,回应和推拉,平衡信源,最后将这些环节打通,用创造力输出内容,记者工作的每一步都不可或缺,而人工智能甚至无法完成其中任何一个。

但是,人工智能可以强化人类的工作成果,以帮助提高工作效率或质量。它能为深化新闻报道带来新机,让报道变得更加个性化。

新闻编辑部的工作总是在适应新技术的浪潮,摄影、电话、电脑,甚至是小小的复印机。记者也必将适应与人工智能的协同作业。作为一种技术,人工智能已经并将持续改变新闻工作,但它非但不会取代一个训练有素的新闻人,反而会让他变得更强。

新工种的出现

Nicholas Diakopoulos发现,人工智能技术似乎正在为新闻界创造新的工作类型。

以美联社为例,该社在2017年推出了计算机视觉人工智能技术,用以标记每天处理的数千张新闻照片。系统可以在标注中指明这张照片包含了什么内容或者哪些人,摄影风格如何,有无暴力画面等信息。

该系统将图片编辑从大量的标注工作中解放出来,从而拥有更多的时间来思考他们应该发布什么。

但无论在研发端还是编辑端,对这一系统的开发都需要大量的工作:编辑必须弄清要标记的内容以及算法对这一任务的匹配度,然后开发新的测试数据集来评估效果。完成所有操作后,他们仍然需要监控系统,手动批准每张照片的建议标签来确保高准确度。

负责该项目的美联社高管Stuart Myles告诉Nicholas Diakopoulos,这项工作耗时数年,十多名编辑、技术和行政人员参与其中。大约三分之一的工作涉及新闻专业知识以及一些特别难以实现自动化的判准。虽然在将来人力监督有望削减,但随着技术系统的发展和扩大,编辑的工作仍将不可或缺。

半自动化内容制作

在英国,RADAR项目每月通过半自动化模式输出约8000篇本地化新闻。该项目由6名记者运营,他们找到按地理区域划分的政府数据集,筛选出有趣且有新闻价值的选题,然后将这些想法发展为数据驱动的报道模板。

模板通过编码,将每条文本和数据归属的地理位置一一对应。例如,一篇报道可以讨论英国的人口老龄化问题,并通过布里斯托不同的本地化统计数据,向卢顿市的读者展示他们所属社群的变迁情况。这些报道会由通讯社发送到当地媒体,并由他们决定是否发布和如何发布。

在这一方法中,记者和自动化高效结合:记者利用他们的专业知识和沟通技巧,为数据预设一些可能的“故事线”。他们也会与不同信源讨论来获取某个问题的全国普适视角,从而编写报道模板。在这个过程中,自动化充当了新闻生产小助手的角色,使同一文本能够适应不同的当地环境。

RADAR记者使用一种名为Arria Studio的工具,它可以让内容生产者一睹自动化内容在实践中呈现的样子——它看起来就像一个复杂版的Word。

作者写出各种碎片式的文本,而这些文本则由if- then- else(如果-那么-否则)的代码规则驱动。例如,在地震报告中,我们可能需要不同的形容词来描述8级地震和3级地震。因此,我们可以这样设计代码:如果地震强度>7,那么输出文本“强烈地震”。否则,如果地震强度<3,输出文本“小型地震“。

像Arria 这样的工具还包含强大的语言功能,例如自动共轭动词或拒绝使用名词,从而更轻松地处理需要根据数据进行更改的文本。

人工智能如何改变新闻工作?

图片

Arria的创作界面使得记者可以专注于自己擅长的事——从逻辑上构建引人入胜的报道情节并制作富有创意的非重复性文本。

但他们也需要一些新的方法来构思报道。例如,模板的编写者在做一个报道前,得了解数据能做到什么。他们需要想象数据能如何丰富角度或使叙事变得多样,同时能勾画出驱动这些变化的内在逻辑。监督,管理或编辑自动化内容的工作人员也越来越多地出现在新闻编辑室中。

质量和准确性是新闻业界最关注的问题。为此,RADAR开发了一个三阶段质检流程:首先,记者将阅读所有的自动化内容;然后,另一位记者将报道中给出的所有结论回溯到原始数据源;最后,编辑会再一次检查报道模板中的逻辑来排除错漏。

这几乎就像一个软件工程师团队在调试脚本时所做的工作,而这也是人类为了让自动化正常运转而不得不做的事。

终结付费墙?

内容生产并不是人工智能大施拳脚的唯一赛道。通过机器学习的算法,新闻媒体还可能发展出新的订阅模式,实现对每一位用户内容消费的量身定制。

通过调整订阅策略以及付费墙设置,新闻媒体一直在试图平衡自由浏览量和用户阅读权限——也就是在寻找广告收入和订阅收入之间的最佳平衡点。

当然,这个神奇的平衡点并不存在。有的人可能在一次浏览后就会订阅,有的人则需要更长时间才能做出付费转化的决定,而有些人根本就不会订阅。这些用户维度的个人差异基于大量指标而变化,例如地理位置、内容消费习惯、访问行为、主题、设备等。

在新技术的加持下,内容供应商不再需要通过单个数字来定义最佳策略,甚至不需要确定一个引导读者订阅的特定路径。如今,他们可以实时为每个用户生成最佳规则,向那些最有可能回应的人提供高价值的优惠。计算机无法自主制定营销策略,但它无疑可以帮助我们对营销策略进行优化。

美国公司Piano用了大约一年时间来改进和测试用户可能性模型。他们的机器学习系统可以筛选出所有浏览器级别的可用数据,从而能够预测并驱动用户行为。

Piano的第一个可能性模型就致力于预测用户订阅的可能性。

以下是它的工作原理:通过与全球各地传媒公司的关联,Piano已经能够分析数百个订阅网站和数十亿的每月用户互动。这一独特的优势使Piano工作人员对营销订阅的因素有了一些深入认知。更重要的是,它为我们观测影响订阅可能性因素提供了确切的数据。

某些数据点与用户转化的可能性密切相关。例如,用户每天或每周访问某个网站的时间,或者他们访问的设备类型等因素,都会定期形成可预测的模式,从而展示用户最终的行为方式。

动态付费墙规则是一种新兴业务,它的背后冉冉升起的是一个定价和业务规则完全动态并为每个用户定制的世界。虽然“订阅经济”已经取得了很大成就,但我们认为这种转变比从一次性支付转向经常性支付更重大。

这将是一个全新的世界,企业生产的所有内容都可以实时响应每一个用户、每一份商机。

深耕人力资源

如前文所述,人工智能和自动化非但没有减少新闻业的岗位,反而正在创造新工作,并改变现有的工作。今后,记者需要接受培训,以设计、更新、调整、检验、纠正、监督以及维护这些技术系统。许多人可能需要学会和数据一起工作,用逻辑思维来处理数据,多熟练掌握一些计算机编程基础知识也是不会错的。

随着这些新技术的发展,确保它们是优质的工作非常重要——人们不能只是在更大的生产机器中成为齿轮,这种新型混合劳动的管理者和设计者需要考量人类对自主性、有效性和可用性的关注。

Nicholas Diakopoulos乐观地认为,在这些技术中聚焦人类经验,将使内容工作者成长,让社会蓬勃发展,让人工智能和自动化交出更好的答卷。

· One min read

最近有很多研究提到,人工智能和自动化为主的技术进步,可能让女性就业受到比男性更大的冲击。

不过更进一步查看的话,所有这些文章会将深层原因归结于,女性更少的从事科学、技术、工程和数学 (STEM) 方向的学习;说大白话,就是女性没有学会编程,不懂电脑技术。

根据伦敦智库 IPPR 的研究,在自动化风险较高的行业中,近三分之二(64%)的英国工人是女性。这是因为众多女性从事的都是零售和行政工作,而这可以通过机器来完成。

IPPR 说:“总的来说,1/10 的女工面临着被机器人替代的高风险。相比之下,只有 4% 的男性工人有同类风险。” [1]

《金融时报》的文章指出,问题出在人们年轻的时候。高校 STEM 专业的学生约 65% 是男性。如果女性年轻时没有机会获得 STEM 相关学位,也就困于家务劳动和带孩子,而没有时间接受再培训。

文章说,新兴经济体许多女性面临更大的困难,因为她们当中有很多人从事仅能维持生计的农业,几乎没有受过教育,也没有什么可转移的技能。[2]

那么,为什么不直接说不会编程技能,或缺少编程思维的人更难找到工作呢?男人就没有这样对程序或基础科学一窍不通的吗?

我对这个问题如此敏感,一个原因是我本人(男)就是与 STEM 无缘的典型案例。

从小就喜欢计算机,却终究没学会编程

在我上高中之初,有一次机会选择文理科分班,这也是中国特色的教育方法。因为我在的高中比较强的是理科,我就选了理科,可是两学期下来,数学只能考 30 多分,物理、化学、生物全面亮红灯。

我对理科知识的唯一回忆,可能是刚上化学课的时候,问老师“石蕊(试纸)的化学式是什么”。没有答案,我只记住自己问了这个问题。

所以,我不得不由高一时的理科班转到文科班,不然的话根本没办法正常的考试。在文科班,我高考的分数也相对好一点,只是因为更多死记硬背的部分,更适合那个时候的我。

我深知考核标准的不同,会导致学生高考分数和社会评价的巨大差异。

有人说,农村孩子吃亏就在于高考不考种地、爬树、捉蟋蟀。都不用这么麻烦,其实文理分班已经能区分很大一部分同学的未来路径——但对某方向本来就很感兴趣,自己知道想要什么的同学除外。

我也知道自己有理科,也就是 STEM 学科方面的弱点。所以,即使我还没上学就用上了电脑,也把未来理想跟计算机捆绑在一起,却不能如愿以偿的从事程序员的工作;最后长大了,也不能由此转岗去做薪水更高,更稳定,前景也更好的编程行业,只能徘徊在电脑行业的边缘。

这一直是我心中的一个结。工作这么多年,我一直想要有机会去尝试从零开始自学编程,甚至给小朋友做启蒙的那些书我也看过,看完都一头雾水。

现在在三四线小城市,也经常出现人工智能和编程培训班的门脸,看了之后,除了更引起我被时代抛弃的焦虑之外,没有其他作用。

我作为科技记者和撰稿人,在掌握新科技趋势方面,属于起了大早,赶了晚集。

我们这些人应该处于整个科技食物链的比较靠下游的位置,最早知道了这些新闻和趋势,但除了写些文章或采访之外,几乎没有其他的方式可以妥善利用。结果,到了自己的工作受威胁的时候,宁可去卖保险。

这更多的是属于个人能力、兴趣偏好的问题,这根本就不是男女差异。

社会上没有一人一朵的“小红花”

我知道,如果我不能及时转到文科班的话,如果全校所有的同学都在理科班,甚至根本就没有文科,没有非 STEM 学科,那么我可能只是一个天资更加平庸的,成绩更差的理科生。在单一维度的评价体系里,我会比现在惨的多。

所以我说不上由理转文这件事,对我的人生是好是坏。从结果上看,我生存在社会尚且可以公平对待 STEM 和非 STEM 学科的时代,还是一件好事。

但是这其实更让我深刻领会到,未来继续保持这种评价体系和工作类型的多样化,对于我们这个社会的意义。

社会全面偏向 STEM 意味着我们的教育方针要做 180 度的大转弯,也不会存在什么“因材施教”的空间,这个问题是如此的严重,现在业界可能还没有充分的意识到问题的严重性。

分析人士只是笼统的说,人工智能虽然取消了很多岗位,但还可以创造更多岗位。想想工业革命!那些手工业者一开始破坏机器,搞卢德运动,但最后工人阶级还是站起来了。

不妨想想幼儿园和小学课堂里的“小红花”。用宽松的,素质教育的方法,老师就会说,班上每一个孩子都有闪光点,即使学习成绩不好,也有其他的评判标准。

如果出于孩子心理健康的考虑,给每个孩子单独设立一个评价体系的话,那么所有人都有小红花,最笨最没人缘的孩子也可以是“系鞋带最整齐的孩子”这样。这在学校里当然是成立的,走入现实可就不适用了。

本来,文史类学科和相关工作,以及程序化,缺乏创造力的工作,意味着“系鞋带最整齐的孩子”也有社会上对应的位置。

但如果说 AI 和自动化将替代的岗位是差不多全部非 STEM 行业,那就意味着全社会至少有一半曾经能够稳定就业的人,一瞬间不再适合在地球上生存。

原来能够给他们稳定收入和正面评价的行业,现在却露出冰冷的面孔。他们原来曾经学会的那些适应社会的习惯和能力,将会不再被人提起,连被评为非物质文化遗产的机会都没有。

培训和救济,似乎都很困难

前述智库给出的意见一般都是与福利、补贴和再教育相关。比如,IPPR 报告作者建议政府引入新的法律,给女性分配工作,开展高技能工作培训,提高最低工资标准等。

FT 的文章同样建议企业和社会推出举措,鼓励女孩学习 STEM 学科,发展编程技能。“不是每个人都需要成为一名程序员,但好的工作将越来越意味着与技术打交道。”

然而,这些文章所指出的理想状态,假设了女性(或其它 STEM 门外汉)只要经过培训,就都能达到一定标准。而不论男女,总有缺乏这方面天赋的人存在——比如我自己。

即使对他们进行失业的相关培训,也将会是困难重重的,因为如果他们真的掌握逻辑思维的能力,掌握学习数学的好方法,他们不是早就去做了吗?甚至他们连去参加培训的完整时间都不具备。

有人说,重复劳动类的劳动力,如果不会 STEM,可以做数据标注工人嘛。但是这样的标注,也是建立在个人隐私以及数据集可以被随意使用的草莽年代,建立在所谓“用隐私换便利”的时候。

受到社会制约的 AI 企业,将更倾向于用小的数据集,用压缩算法,最终达到能在用户个体的终端上,离线完成 AI 运算。当数据使用量减少的时候,数据标记工人只是会更快的迎来下一次失业。

我们再说说救济。现在,国家规定对公司招募残疾人、特定少数民族、退伍军人等执行补贴,这是在直接聘用他们会削弱企业市场竞争力的前提下,采取的平衡手段。

将来,这个巨大的救济包袱还会更重,因为以前能够自食其力的流水线组装工人、收银员、话务员等岗位都要归入救济队伍,他们本来应该是供养养老金的有生力量。福利的池水被加速抽干,每一个人分摊到的福利金额都会下降。

社会在考虑自动化新技术与就业的连带关系的时候,不能偷懒的只算工作总量和总失业率,因为这不是冷冰冰的数字,而是一个个具体的人,以及他们背后的家庭。

受影响的人当中,有多少人或者因为信息不对称,自己都没有察觉到,或者想到了,也因为没有天赋,没有兴趣或者没有财力精力,而只能默默的滑落下去。

我理解,一些研究者先假设不会 STEM 的都是女性,毕竟“女生学文科的多”,然后再跟性别话题挂钩,来引起人们注意。这是一种非常讨巧的尝试,可以利用现在风头正劲的女权思潮,利用她们强大的舆论动员力,来实现对自动化社会议题的关注。

但这实际上会模糊问题的焦点,并且使得跟他们所说的“女性”实质上具有同等问题的男人,更得不到关注,沦落为无人问津的“夹心层”。

结论

一个更自动化的社会,会显著的减少对一般人类劳动力的需求。在人类各种能力中,偏向创造力、想象力、沟通交流能力,以及控制机器的能力的一面会被更突出强调。

可惜的是,人类固有的缺陷——也可能是优势——就是,创意方面最强大的能力,往往只集中于极少数天赋异禀的英才手中。相比之下,一旦某个机器学会一个能力,它的任意一个复制品,都会一瞬间具备同样的能力。

也就是说,至少在教育方面,想要让人们往找到工作的方向走,依靠非标准化的非 STEM (“文科”)培训很难,而 STEM(“理科”)方向则较为容易。

这将不可挽回地导向全社会只重视 STEM 的单一评价标准,更多人将被判为不合格,没有能力赚到维持生活的钱。

要么继续思考怎么培训他们,要么就改变分配方式,比如给全民派钱什么的——这样的思考和讨论,已经到了非进行不可的时候。

· One min read

如今,似乎每个公司都在用人工智能做事 - 或者如果他们不做,他们就会喜欢。该技术有望改善我们的工作和生活方式,从制造到零售,检查等各个行业都在努力构建自己的AI解决方案。但从哪里开始?

我喜欢说AI就像烹饪一样 - 这些都是关于成分的。没有好的成分,即使最好的食谱也会变得平淡无味。AI也是如此,但在这种情况下,成分就是你的数据。如果组织不密切关注他们开发人工智能解决方案所需的数据并确保其有效准备和组织,那么人工智能解决方案将充满效率低下 - 无论结果是有偏见的算法,无效的解决方案,还是仅仅没有人工智能的人工智能不行。 高功能的AI以良好的数据开始和结束。 数据:好,坏,丑 训练深度神经网络(DNN)的最大挑战之一是训练它们的繁琐过程 - 人工智能系统不仅需要数据来了解世界,它们还需要数万倍于人类的数据。 幸运的是,我们人类目前每天产生2.5个五分之一字节的数据。互联网是绝对数据金矿。不幸的是,大部分都不公平,因为人们通常不愿意分享他们的个人数据,即使这意味着建立更好的人工智能系统。 而且,如果你足够幸运地克服了拥有足够数据的障碍,那么仍然存在质量问题。并非所有数据都是平等的。为了识别物体或行为,必须从各种角度等对所有不同条件下的数据进行AI训练。否则,算法偏差是不可避免的。 正如数据科学家Daniel Shapiro在最近的一篇文章中所详述的那样,存在许多不同的数据质量缺陷,包括数据稀疏性,数据损坏,无关数据,缺少重要模式,错误模式和错误标签。 计算机视觉解决方案的正确数据 最成功的公司是那些能够打破整个组织的数据孤岛并收集他们可用数据的整体视图的公司。一旦他们完成了这项工作,他们就能够创建增强数据的流程,以达到产品化解决方案所需的水平。 这就是好数据存在的地方:它们拥有它,并且非常适合它们的特定用例。 人们经常问我需要多少数据来创建有意义的解决方案。对于给定用例,我们的经验法则是1000个图像/类是进入的障碍,并且为了达到生产水平准确度(90%+),需要5,000-10,000个图像/类。 然而,质量问题 - 即使看起来有足够数量的数据 - 也占上风。我在检测行业看到了这方面的例子,我惊讶于他们有多少图像只关注一个物体的一个角度,或者仅在一个特定的光照条件下拍摄。像这样的照片不会给他们的人工智能无人机提供他们完成工作所需的信息。 换句话说,坏照片等于糟糕的无人机。 当好图像出错时 但重要的不仅仅是照片本身的质量; 在标记过程中,有足够的机会让好的照片变得拙劣。 由于AI应用程序需要标记数千个图像,因此人类可能标记不佳或引入错误 - 特别是因为当前工具是简单的图片编辑工具,如Microsoft Paint,它们不是为此目的而构建的。即使很小的不精确,复杂的成千上万的图像,也会对计算机视觉模型的准确性产生很大的影响。如果您考虑生产级产品或解决方案,准确度每增加一个百分点就会对组织产生重大影响。 值得一提的是,由于数据标记成本与标记所花费的时间成正比,因此单独执行此步骤通常需要每个项目花费数十至数十万美元。 良好的标记工具是关键成分 我最近参加了一个关于为检查服务实施AI的网络研讨会。主持人谈到他们如何每小时支付五十到一百美元让土木工程师进行注释和分类工作。他们觉得他们需要行业专家来标记这些图像,但这花费了他们巨额资金,这是他们最大的瓶颈。 Scale API,Mighty AI和CloudFactory等数据标签服务与数百家贴标机(通常在海外)签订合同,是一种更有效,更具成本效益的替代方案。同时,希望在内部处理标记的公司需要一个精确的,自动化的,专用的注释工具。 A(I)成功秘诀 工程师经常将AI开发称为“sprint”,努力快速测试,迭代和部署AI。但是,人工智能深深植根于研究,现实情况是,传统上,生产的道路很漫长。但是,使用正确的数据标记工具,可以实现快速测试 - 反过来,可以实现更快的迭代和部署。 投资最好的工具和合适的人员来准确有效地注释您的数据将对生产级AI解决方案的成功产生巨大影响。而且 - 运气好的话 - 数据标记和AI应用程序开发成功的“配方”将让您的客户回来几秒钟。

管理开发项目的新方法 了解组织应用开发项目的最佳方法,保持代码直观,客户满意,并通过发布更轻松地呼吸。

通过众包的价值 弥合众包研究的孤岛,更快地建立更好的解决方案。 最新的Nerd Ranch指南(第3版)到Android编程 编写并运行代码的每一步,使用Android Studio创建与其他应用程序集成的应用程序,从Web下载和显示图片,播放声音等。每个章节和应用程序都经过设计和测试,以提供您开始Android开发所需的知识和经验。 开始自己的应用业务? 如何创建有利可图的可持续业务开发和营销移动应用程序。

· One min read

数据标注员成就了今天的人工智能,为什么说AI对人类劳动力来说是个好消息

人工智能(AI)在未来的工作中扮演什么角色?从目前的趋势来看,它将使企业更智能,流程更高效,体验更个性化,客户更满意 - 尽管这并不能阻止那些有先见之明的Cassandras做出更可怕的预测。为了听取他们的讲话,一个新的大师类天才机器将逐渐但不可避免地从一个接一个的职业取代人类,直到我们大多数人闲置和贫困。我相信现实并不是那么反乌托邦 - 但它可能同样具有变革性。

这不是第一次将技术创新视为对人类劳动的至高无上或必要性的威胁。在缝纫机发明四十年后,第一家机器制衣厂被工人们害怕失去工作而被烧毁。当然,今天全球服装业雇佣了大约4000万人。同时,缝纫机的商业化使消费者能够更有效地制作和修补自己的衣服,有助于增加对织物的需求,扩大普通人的衣橱,并使以前辛苦的手动任务更快更简单地完成。

恐惧是这些可怕预测的根源。人们担心机器会从人类中获取工作或者超越我们,从而彻底取代我们。我相信现实是,通过教这些机器来接管我们日常的日常任务,我们给予自己更多的自由和灵活性,在我们的领域保持领先,并为自己提供更多的个人和职业发展机会。

缝纫机和人工智能系统之间存在明显差异,但在我看来,他们有朝一日都会证明反思恐惧和毫无根据的假设无法预测革命性技术的未来。也不是天上掉馅饼的幻想 - 我们还没有飞行喷气背包去工作或以药丸的形式吃饭。重要的是要清楚地了解人工智能跨行业的潜在好处,以了解如何最好地进行。

让AI为我们工作,而不是相反

AI是一种工具。从锤子到启发式分析引擎的任何工具都可以使其用户更加高效,高效和高效。人工智能系统可能会从人类的手(或大脑)中完成某些任务,但我相信它会使人类更有效,而不是更少的必要。例如,AI的一个主要用途是模式识别。在安全上下文中,这可能意味着发现IT环境中的异常活动或行为可能表示存在违规行为。如果没有人工智能,你需要投入更多的人工来发现这些异常现象,但你也会发现更少的异常情况,减少违规行为并减少故障中的漏洞。同时,该业务受到更多损害。这对员工来说最好吗?

现在将AI和机器学习技术添加到安全团队的工具库中。利用这些工具在后台寻找异常和威胁 - 利用我们教过的技能 - 安全和IT专业人员可以专注于更全面的安全方法。特别是,通过使技术更加智能化,我们可以解决每个企业安全态势中最薄弱的环节:人的因素。更智能的系统创造了更简单,更安全的工作体验。智能数字工作区可以包含更少的登录步骤(因此人们不会想要在Post-Its上使用快捷方式或写密码),无需将白名单或黑名单应用列入白名单(这种做法与IT员工一样讨厌) ,允许通过公共网络的安全连接(对于那里的星巴克Wi-Fi战士)等等。AI也有助于提高生产力。一个 普华永道的一项研究 发现,到2030年,人工智能有可能将全球经济的生产力和GDP潜力提高26%。

在安全的情况下,AI使团队的努力更加成功,而不会取消他们的工作。作为可能产生更大影响的二阶效应,它还可以通过提高人们工作方式的效率和灵活性,使整个员工队伍更加有效。当人们可以在更多场景中更轻松地工作时,他们可以为业务带来更大的价值,有助于刺激增长,从而实际上可以增加公司对劳动力的需求。从这个意义上说,人工智能不会取代人,它会使人们充满活力 - 这对整个组织都有好处。

随着人工智能的补充和增强计算的人性因素,您可以在整个组织中看到这些战略优势。通过自动执行平凡的任务并消除错误,AI可以提高业务效率。通过从当今令人眼花缭乱的设备和连接矩阵产生的大量数据中获取洞察力,它可以帮助我们做出更明智的决策,为企业,工人和客户带来好处。通过帮助我们跟上数字化转型的闪电步伐,它可以让我们通过主动解决问题和智能策略来管理风险,以防止漏洞发生。

在更高的层面上,我相信人工智能对解决目前困扰我们经济的巨大人才短缺至关重要。我们需要技术来减轻人类的平凡任务,因此我们可以专注于推动业务发展的更高层次的任务。对于竞争那里的人才的个别公司 - 特别是那些我们一直听到的千禧一代 - 智能工作场所技术对于赢得人才战争至关重要。人们越来越期望他们应该能够以他们想要的方式,他们想要的地点和时间工作。AI可以在不影响安全性的情况下提供灵活性,因此人们可以获得现代工作体验,帮助他们做最好的工作并拥有最好的职业。

人工智能不会崛起并接管世界。它学习我们教它的内容 - 我们正在教它我们希望我们的未来工作看起来像:安全,灵活,高效和高效。